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Abstract

Many esports use a pick and ban process to de-
fine the parameters of a match before it starts.
In Counter-Strike:  Global Offensive (CSGO)
matches, two teams first pick and ban maps, or vir-
tual worlds, to play. Teams typically ban and pick
maps based on a variety of factors, such as banning
maps which they do not practice, or choosing maps
based on the team’s recent performance. We intro-
duce a contextual bandit framework to tackle the
problem of map selection in CSGO and to investi-
gate teams’ pick and ban decision-making. Using
a data set of over 3,500 CSGO matches and over
25,000 map selection decisions, we consider dif-
ferent framings for the problem, different contexts,
and different reward metrics. We find that teams
have suboptimal map choice policies with respect
to both picking and banning. We also define an
approach for rewarding bans, which has not been
explored in the bandit setting, and find that incor-
porating ban rewards improves model performance.
Finally, we determine that usage of our model could
improve teams’ predicted map win probability by
up to 11% and raise overall match win probabili-
ties by 19.8% for evenly-matched teams.

1 Introduction

As data acquisition methods become more pervasive, sports
analytics has received increased interest in contemporary
sports, like soccer, basketball and baseball [Assungdo and
Pelechrinis, 2018]. One common application in sports an-
alytics is valuing player actions and decision-making. For
example, Decroos et al. introduce a framework to value soc-
cer players according to how their actions change their team’s
chance of scoring [Decroos et al., 2019].

Esports, also known as professional video gaming, is one
of the fastest growing sports markets in the world. Yet esports
has attracted little sports analytics interest. Most analytical
work in esports covers massively online battle arena (MOBA)
games, such as League of Legends or Defense of the Ancients
2 (“DOTA2”). Accordingly, there exists a dearth of work on
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Counter-Strike: Global Offensive (CSGO), one of the oldest
yet most popular esports. A picking and banning process is
a common process in many esports, where some entities are
banned from being played in a particular game. For example,
in League of Legends, teams ban a set of characters, and their
players each pick a character to play before the game starts.
In CSGO, teams typically perform a map selection process
where each team takes turns picking and banning maps to
play. However, map selection routines are often not based
on analytics and data, but rather on players’ inclinations at
selection time.

Contextual bandits are statistical models that take a context
x and return a probability distribution over possible actions
a, with the objective of maximizing the reward r returned by
the action taken. In this paper, we apply a contextual bandit
framework to the domain of map selection in CSGO. We use
a novel data set of over 25,000 map pick and ban decisions
from over 3,500 professional CSGO matches to train three
different bandit framings to the problem. We find that teams’
choices in the map selection process are suboptimal and do
not yield the highest expected win probability.

The paper is structured accordingly. In section 2, we re-
view relevant esports and contextual bandit works. In sec-
tion 3, we cover CSGO’s map selection process. In section 4,
we introduce our contextual bandit model. In section 5, we
describe our dataset and our evaluation methodology. Sec-
tion 6 contains our results. We discuss the benefits of our
model, the choices of evaluation metrics and suggest possible
areas of future work in section 7 and conclude the paper in
section 8.

2 Related Work

Reinforcement learning (RL) techniques are increasingly be-
ing applied to sports analytics problems. Liu et al. first used
RL in sports to estimate an action-value Q function from mil-
lions of NHL plays [Liu and Schulte, 2018]. They used the
learned Q function to value players based on the aggregate
value of their actions. Liu et al. also apply mimic learning
to make their models more interpretable [Liu er al., 2018].
Sun et al. extend this work by considering a linear model
tree [Sun et al., 2020]. While the previous works heavily
focused on ice hockey, Liu et al. also learn an action-value
Q function for soccer [Liu et al., 2020]. Despite the heavy
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Figure 1: Example map selection process for a best-of-three match. The available map pool is shown above each pick/ban decision. The first
team, usually decided by tournament rules, bans a map. The second team then does the same. The two teams then both pick a map, and then
both ban a map. In total, there are six decisions, four of which are bans, and two are picks.

use of other RL approaches such as Q-learning, contextual
bandits have not been as heavily utilized in sports analytics.

This paper applies contextual bandits to the multi-arm map
selection process in esports matches for the game CSGO.
Contextual bandits are a simplified case of reinforcement
learning. In reinforcement learning, an action is chosen based
on the context (or state) and a reward is observed, and this
process is repeated for many rounds. Rewards are not ob-
served for actions not chosen. In the contextual bandit case,
the contexts of different rounds are independent. [Tewari
and Murphy, 2017] provides a thorough review of contex-
tual bandits, tracing the concept back to [Woodroofe, 1979]
and the term back to [Langford and Zhang, 2008]. Many
approaches have been explored for learning policies in the
contextual bandit setting. [Williams, 1992] introduced gra-
dient approaches in the reinforcement learning setting, and
[Sutton and Barto, 2018] applied the approach to the specific
case of contextual bandits. Comparing proposed policies of-
ten requires off-policy evaluation: estimating the value of a
policy from data that was generated by a different policy (the
“logging policy”). This paper utilizes two off-policy evalu-
ation approaches: the self-normalized importance-weighted
estimator [Swaminathan and Joachims, 2015] and the direct
method of regression imputation [Dudik er al., 2014]. To our
knowledge, ban actions have never been modeled in the ban-
dit setting.

Esports have mostly attracted sports analytics interest in
the form of win prediction and player valuation. Numerous
efforts have been made to predict win probabilities in popu-
lar esports games such as CSGO and DOTA2. [Yang et al.,
2016] and [Hodge et al., 2019] first use logistic regression
and ensemble methods to predict win probabilities in DOTA2,
a popular MOBA game. [Makarov et al., 2017] first predicted
CSGO win probabilities using logistic regression, however
their data only included less than 200 games. [Xenopoulos et
al., 2020] expand on previous CSGO work by introducing a

data parser and an XGBoost based win probability model for
CSGO. They also value players based on how their actions
change their team’s chance of winning a round. [Bedndrek et
al., 2017] value players by clustering death locations.

Map selection is a process largely unique to CSGO and
has not been well studied, but is loosely related to another
esports process unique to MOBA games: hero selection. In
DOTAZ2, for example, players from opposing teams alternate
choosing from over one hundred heroes, with full knowledge
of previous hero selections. [Yang er al., 2016] and [Song
et al., 2015] use the selected heroes as features to predict
win probability, but do not recommend hero selections or
explicitly model the selection process. More relevant is the
hero selection recommendation engine of [Conly and Perry,
20171, which uses logistic regression and K-nearest neigh-
bors to rank available heroes based on estimated win proba-
bility; they do not, however, consider historical team or player
context.

3 Counter-Strike Map Selection

Counter-Strike is a popular esport that first came out in 2000,
and CSGO is the latest version. The game mechanics have
largely stayed the same since the first version of the game.
Before a CSGO match starts, two teams go through the map
selection process to decide which maps the teams will play
for that match. A map is a virtual world where CSGO takes
place. Typically, matches are structured as a best-of-three,
meaning the team that wins two out of three maps wins the
match. A team wins a map by winning rounds, which are won
by completing objectives.

The collection of available maps in the map selection pro-
cess is called the map pool. Typically, there are seven maps
to choose from in the map pool. Although the maps rarely
change, a new map may be introduced and replace an exist-
ing map. Our data contains map selections using the follow-
ing map pool: dust2, train, mirage, inferno, nuke,



overpass, vertigo. The map selection process is exem-
plified in Figure 1. First, team A bans a map. This means
that the teams will not play the map in the match. The team
that goes first in the map selection process is usually higher
seeded, or determined through tournament rules. Next, team
B will ban a map. The teams then will each pick a map that
they wish to play in the match. Next, team A will ban one
more map. At this point, team B will ban one of the two re-
maining maps, and the map not yet picked or banned is called
the decider.

Professional teams may sometimes have what is referred to
as a permaban — a map that they will always ban with their
first ban. For example, some teams may choose to ban the
same map in over 75% of their matches. From interviews
with four CSGO teams ranked in the top 30, two of which are
in the top 10, teams choose their maps from a variety of fac-
tors. Some teams try to choose maps they have a historically
high win percentage, or maps where their opponents have low
win percentages. Other teams may also choose maps purely
based on how their recent practice matches performances.

4 Bandit Model for CSGO Map Selection

In order to model the map selection process, we elected to
use a k-armed contextual bandit. This was a clear choice:
the actions taken by teams only yield a single shared real-
ity, where we cannot observe the counterfactual of different
choices. The bandit model enables us to approximate the
counterfactual reality and frame this problem as a counter-
factual learning problem.

In particular, we used the context from teams’ previous
matches, as well as information available at the time of se-
lection, such as which maps were still in the selection pool.
There are two kinds of actions: picks and bans, which must
be manipulated differently. The reward is the map being won
by the choosing team or not, as well as more granular version
of this in which we include margin of victory.

4.1 Context and Actions

Our initial choice for the context given a particular round ¢ in
the map-picking process was a one-hot encoding for the avail-
able maps in that particular round, such that the bandit would
learn to not pick the map if it was not available. To give the
bandit more information about the teams that were deciding
for that particular match, we implemented two historical win
percentages, the first being the team’s historical match win
percentage, and the second being the team’s historical map
win percentage for each map. The first percentage is utilized
to indicate team strength compared to other teams, and the
second the team’s overall ability to play well on each map.
We applied Laplace smoothing to the initial percentages for
numerical stability, using the formula

. Wins + 5
Win% = Matches + 10° M
Both win percentages were stored in the context vector for
both the deciding team and the opponent team alongside the
available maps. For both picks and bans, the given context
is the same as described above, and the corresponding action

would be the map picked or banned by the deciding team.

4.2 Rewards

Picks

Due to the nature of the map-picking process, where the de-
cider is a forced pick, we chose to remove the rewards from
all final map picks, as it would not make sense to reward ei-
ther team for a forced choice. As a result, only the first two
picks from each map selection process were given a reward.
Rewards for map-picking were implemented with two differ-
ent methods. Our first method utilized a simple 0-1 reward
(““0/17), where if the deciding team won on the map they
had picked, they would be rewarded with an overall reward
of 1 for that action, or 0 otherwise. Our second method re-
warded the deciding team based on the margin of rounds won
(“MoR”) in the best-of-30 rounds on the decided map. The
reward function for deciding team ¢ and an opponent team j
is given below:

R Rounds won by ¢ — Rounds won by j
i =

2

The round proportion rewards were implemented as a more
granular method to compare team performance on each map.

Total number of Rounds on map

Bans

Since there is no data on how any deciding team would per-
form on a banned map, we chose to reward bans based on
the deciding team’s overall performance in the match, where
if the deciding team won the match, they would be rewarded
for choosing to not play on the banned map with an overall
reward of 1, or, if they lost, a reward of —1. In addition, we
implemented a exponentially decreasing reward over the ban
process, where earlier bans would have higher rewards. Later
map picks have fewer available choices: restricting the action
space means a team may be forced to make a choice they do
not want, and so we de-emphasize the later choices. The ban
reward function for team 7 playing in match ¢ is given below:

1.4
Ri,t(n) = {_12"1

if team ¢ won match ¢

” . 3)
- 5w if team ¢ lost match ¢
where n is the nth ban in the map picking process. In our
case, n € {1,2,3,4}, as there are always four bans in the

map picking process for CSGO.

4.3 Policy Gradient Learning

The most straightforward way to train a bandit is via policy
gradient learning [Sutton and Barto, 2018]. For our policy
class, we use a multinomial logistic regression parameterized
by weights 6 and an action-context mapping function ¢(x, a),
with the softmax function to transform the affinity of the ban-
dit for each action into a probability:

exp(0T¢(z, a
rale) = — p(6” ¢(z, a)) .
> iz1exp(07d(x, 1))

The policy gradient approach trains the model via SGD
[Sutton and Barto, 2018], enabling both online and episodic
learning. In particular, the optimization maximizes the ex-
pected reward for the bandit, using the update function

“4)

9t+1 < 9+77Rt(At)VQ logﬂ'gt(AAXt) (5)



Picks (0/1)  Picks (MoR) Bans (0/1) Bans (MoR)
Uniform policy (split) 0.568/0.541  0.568/0.541 -0.018/-0.003  -0.018/-0.003
Logging policy 0.549/0.549  0.549/0.549 -0.014/-0.014 -0.014/-0.014
SplitBandit 0.587/0.554  0.659/0.528 -0.016/0.004  -0.016/0.004
ComboBandit 0.640/0.528  0.613/0.573 0.021/0.003  0.036/-0.015
EpisodicBandit 0.568/0.551  0.561/0.547 0.013/0.006 0.013/0.006

Table 1: Expected reward for each policy type under four different evaluations. The best policy parameters were found via grid search and
the policy was optimized with policy gradient. Both the SN-IW (left) and DM (right) evaluation methods are presented, except for Logging
policy where the on-policy value is presented. Every model tested outperforms or matches the baseline uniform policy, with the best overall
model being the bandit trained on both picks and bans. Comparisons between the uniform and logging policy indicate teams choose their

bans well, but their picks poorly.

with 7 defined above and the gradient

k ) )
2icy O, i) exp(07 ¢(x, 7))
k .
Eizl exp(07 ¢(, 1))

In the context of picks, we can use online learning to itera-
tively update the parameters 6. For bans, however, we do not
observe a reward at the time the choices are made; as a re-

sult, we used episodic learning, where an episode is an entire
match.

Vologm(alz) = ¢(x, a) — L (©®)

S Experiments

5.1 Data

We obtained our data from HLTV.org, a popular CSGO fan
site. The site contains scores, statistics and map selections
for most professional matches. We use matches from April
2020 to March 2021. In total, this consisted 628 teams that
played a total of 6283 matches, summing to 13154 games.
We only consider best-of-three matches, which are by far the
most popular match format. We focus on the games where
the most common set of seven maps is selected from the map
pool of dust2, inferno, mirage, nuke, overpass,
train, vertigo. In addition, we also remove teams such
that in the final dataset, each team has played at least 25
games, or approximately 10 matches, with another team in
the dataset. This leaves us with 165 teams, playing a total of
3595 matches, summing to 8753 games. The resulting dataset
was split into an 80-20 train-test split by matches for bandit
learning and evaluation.

5.2 Evaluation

We use two typical off-policy evaluation methods, the direct
method (“DM”) [Dudik et al., 2014] and the self-normalized
importance-weighted estimator (“SN-IW”) [Swaminathan
and Joachims, 2015]. We also present the mean reward ob-
served as a baseline.

The goal of the direct method is to estimate the reward
function r(x, a) that returns the reward for any given action a
for the context x. We estimate the reward function by using
an importance-weighted ridge regression for each action. We
use the self-normalized importance-weighted estimator with
no modifications.

Value estimates are presented for four different reward and
model training settings:

* Picks(0/1): Expected pick reward for models trained
with 0/1 rewards

* Picks(MoR): Expected pick reward for models trained
with MoR rewards

* Bans(0/1): Expected ban reward for a models trained
with 0/1 rewards

* Bans(MoR): Expected ban reward for models trained
with MoR rewards

5.3 Variety of Policies

We experimented with three different varieties of con-
textual bandits: SplitBandit, ComboBandit, and
EpisodicBandit.

SplitBandit is composed of two individual, sim-
ple contextual bandits, each with a 6 parameter size of
(n_-features - n.arms). The first contextual bandit is
trained on the picks via online learning. The second contex-
tual bandit is trained on the bans in an episodic fashion.

ComboBandit is a single model also trained on the
picks via online learning and on the bans via episodic learn-
ing with a 6 parameter size of (n_features - n_arms).
ComboBandit learns a single set of parameters that define
a policy for both picks and bans. The ban policy is derived
from the pick policy:

1 — mp(alX)
ZQEA 1- 7TP(CK|X)

for pick policy mp and ban policy mp over actions A and
context X.

EpisodicBandit is similarly a single model, but
it is trained on both the picks and bans simultaneously
via episodic learning with a 6 parameter size of (2 -
n_features-n_arms). We expected this model to perform
similarly to SplitBandit, since its gradient estimates are
better estimates than the estimates derived from individual
datapoints, offsetting the quicker adaptability of the online
gradient calculation with less noise.

mp(alX) = )

6 Results

Our main results are summarized in table 1. Considering
the self-normalized estimator, the best model for picks was
SplitBandit trained on proportional rewards, while the
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Figure 2: Picks(0/1) value on the test set for ComboBandit and
Uniform policy, evaluated every 100 rounds over 3 epochs of train-
ing. The bandit quickly surpasses the uniform policy’s performance
and plateaus around an expected reward value of approximately
0.64.

best model for bans was ComboBandit trained on propor-
tional rewards. The uniform policy performs better than the
logging policy for the picks in our dataset but worse for bans,
which indicates teams’ picks might be overconfident, whereas
their bans are chosen more carefully.

ComboBandit substantially outperforms all other poli-
cies. We believe this is due to its training including the addi-
tional data from both picks and bans instead of selecting only
one of the two categories for training a given parameter. This
yields a better optimization through better gradient estimates.
EpisodicBandit is trained on both picks and bans, but its
parameters do not depend on both subsets of data, which does
not provide that optimization advantage. The learning curve
in Figure 2 shows that ComboBandit surpasses the uniform
policy benchmark after only a few training rounds, continu-
ing to improve over 3 epochs of training.

Figure 3 shows an example of ComboBandit’s policy.
In this match, team TIGER chose to play on the map Nuke,
which they later lost. ComboBandit suggested instead to
play on Overpass, with 71% probability. In the same
match, Overpass was chosen as the decider and TIGER
won that map, indicating that the bandit model’s policy dis-
tribution was more valuable than the team’s intuition on map
choice.

7 Discussion

The results indicate that teams using our chosen policy in-
stead of their traditional map-picking process can increase
their expected win probability by 9 to 11 percentage points,
depending on the policy used. This is a substantial advantage
for a best-of-3 match, since the model could confer that added
win probability to all three map choices. The ban choice can
be improved as well by using our model. The logging policy
yields an expected reward of approximately —0.014, which
indicates that bans have a slight negative effect on match win
probability. However, our best model’s expected reward for
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Figure 3: The best model’s probability distribution for pick 4
in a match between TIGER and Beyond. TIGER, the deciding
team, chose Nuke and lost the map, later going on to win map
Overpass, which was ComboBandit’s suggestion.

bans is 0.036, thus increasing match win probability by ap-
proximately 5% after a ban choice. For two teams that are
evenly matched, using our bandit for both pick and ban de-
cisions translates to the team that uses the model having an
expected overall match win probability of 69.8% instead of
50%, a substantial advantage for a team.

The choice of evaluation metric is particularly important
in examining the results. Using the direct method instead of
the self-normalized estimator, we reach drastically different
conclusions about which model to use, with the best overall
model being EpisodicBandit. In our experiments, we
used ridge regressions for our regression imputation. This
is clearly a suboptimal model for this estimation, since the
context features of win probabilities are bounded: there is a
non-linear relationship between the context and the rewards.
This is a big limitation of our experiments: we instead relied
on the importance-weighted estimator, which is known to be
imprecise in estimating policies far from the logging policy.

Future work in this area will be concentrated on examining
better choices for evaluation metrics, as well as expanding
the contextual features further by adding, for example, player
turnover, team-based Elo metrics or rankings, or examining
recent performances, such as win percentage in the last 10
matches. The rewards can also be expanded by using not only
margin of rounds won per map, but also the margin of players
alive per map at the end of a round. Additionally, different
framings for the bandit can be considered, such as creating a
ranking of which maps are best to choose instead of the model
selecting a single map for the user.

8 Conclusion

We modeled the map selection process in Counter-Strike:
Global Offensive as a bandit, framing the problem in several
different ways. Our key contributions are (1) the introduc-
tion of bandits and simple reinforcement learning models to



esports and CSGO in particular, and (2) novel ways of imple-
menting negative choices in bandits, for which we explicitly
choose not to observe their rewards. We find that our model
shows that teams are making sub-optimal map selections.
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