
Generative Adversarial Networks for Electron
Miscroscope Image Denoising

Chuan Chen∗
cc6580@nyu.edu

Center for Data Science
New York University
New York, NY 10012

Michael Stanley∗
mhs592@nyu.edu

Center for Data Science
New York University
New York, NY 10012

1 Introduction

Image denoising has always been a problem of interest in experimental sciences. Due to hardware
limitations, images obtained from equipment need to be cleaned and denoised before further scientific
analysis can be conducted. This issue becomes even more of a problem when working on the
microscopic scale. For our project, we aim to denoise electronic microscope images of atomic
structures. Traditional denoising methods use mean-squared error as a loss function, but due to its
averaging nature, the resulting images often have problems such as blurriness or exhibiting phantom
artifacts [11]. To overcome these issues, we propose a generative adversarial network (GAN) based
denoising method in which we first train a GAN to generate realistic microscope images, then
optimize over the latent space to find a clean image that most resembles the noisy image we were
given. Since well-trained GANs could only generate reasonable images, we hypothesize that our
method can help avoid the problems brought by traditional denoising methods.

2 Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks are a class of models that learn the training data’s distribution to
generate new samples from that same distribution. Since their introduction by Goodfellow in 2014,
GANs have gained much attention in the field of machine learning [5]. GANs are comprised of two
separate models, a generator and a discriminator. The generator model aims to generate fake images
that look like the real training images. The discriminator model aims to distinguish the fake images
that outputted by the generator from the real images of the training set. During training, the generator
weights are updated to fool the discriminator and to generate more realistic-looking fake images,
while the discriminator weights are updated in the aims of correctly classify the real and fake images.
Ideally, training should reach an an equilibrium when the generator is creating images that look as if
they came directly from the training data, and the discriminator always outputs a 50% confidence that
the generator output is real. Although, true convergence is rarely achieved during actual training, and
GANs have shown good results without perfect convergence.

In 2015, Radford et al. proposed an extension of GANs by combining them with deep convolutional
networks, where they explicitly used convolutional layers in the generator and convolutional-transpose
layers in the discriminator [14]. They termed their model Deep Convolutional Generative Adversarial
Networks (DCGAN). This extension led to a surge in the application of GANs on natural image pro-
cessing. The paper conducted extensive empirical trials with varying model designs, configurations,
and training schemes, and their approach to training and designing the GAN has become the de-facto
standard in the area for stable GANs and provided the inspiration for our GAN architecture.

∗Authors are listed alphabetically and contribute equally to the paper.



For their implementation, they have trained a DCGAN which generates 3× 64× 64 RGB natural
images from a latent vector z that is randomly drawn from the standard Gaussian. The success of
their model has led to its use in several different applications, with AI-generated faces being one of
the most popular. The image below shows the training images for the DCGAN on the left and the
generated images on the right.

Figure 1: real and generated images of DCGAN

Although by the human eye, unnatural features in the generated images can still be noticed, the
generator largely captured important features such as facial structures and hair placements.

The success of DCGAN largely motivated our hypothesis of GAN-based denoising. Although
electronic microscope images have much larger dimensions in our study, 512 × 512 as opposed
to 32× 32 and 64× 64 for traditional GAN implementations, they typically contain less complex
features than natural images. Thus, training a GAN for our purposes seems possible with a few
modifications.

2.2 Image Denoising

The classic approach to signal denoising is the Wiener filter [16], which assumes a stationary signal,
stationary additive noise, and known spectral characteristics of both. In the 1990s, wavelets were
introduced to map a noisy signal to a sparser representation which can then be thresholded to remove
small coefficient "noise" components. Both approaches are still widely used in signal processing, but
neither is learning based: they cannot benefit from training data.

Since 2015, the dominant approach to image denoising has been learning based models. Leveraging
the deep convolutional neural network (CNN) architectures introduced in [9] for denoising, models
such as DnCNN [17] achieved state of the art performance in denoising. Most CNN denoising
methods, however, do not generalize outside of the noise levels that were present during training. [11]
shows that bias terms in denoising CNN architectures can overfit to the noise level, and introduced a
bias-free denoising model (BF-DnCNN) that generalizes to noise levels unseen during training.

2.3 Generative Models for Inverse Problems

Inverting generative models (from the image space to the latent space) remains an open research
problem. [3] introduced a gradient based method that finds, for a target image, the latent vector that
maps to an image very similar to the target image. Formally, the method seeks to find the zopt that:

zopt = argmin
z
‖I −G(z)‖22 (1)

where I is the target in the image space, z is a randomly initialized vector in the latent space, and
G is the generator mapping the latent space to the image space. Gradient descent methods can be
utilized to solve this optimization problem. Eq(2) is not necessarily convex, so a global minimum is
not guaranteed.

[10] first applied this GAN optimization method to image denoising, utilizing a trained DCGAN
model on human face images. The approach is quite successful, though only tested on small images
of 32x32 pixels. No literature exists (to our knowledge) of applying GAN latent space gradient

2



optimization images larger than 32x32, or outside of natural images. [1] applies a similar method to
compressed sensing of 64x64 pixel natural images.

3 Problem Definition and Algorithm

3.1 Task

The problem addressed in this paper is electron microscope image denoising. Given a noisy image,
Inoisy, as input and the corresponding clean image, Iclean, the desired output is an image Idenoised
that is as similar as possible to Iclean. For simulated data, Iclean is known and the noise model is
controlled. For actual microscope images, Iclean is not available and the noise model is not known.

In order for this approach to work, it is vital that we have a generator that could actually be capable
of generating a variety of different realistic images so that a close clean image can always be found
no matter what noisy image was given. Without a good generator, we would be unable to find the
optimal latent vector no matter how good the optimizer design is. Thus, our first task is to train a
well-performing generator model that takes in standard Gaussian random vectors and returns a variety
of realistically looking microscope images.

To utilize the trained generator for denoising, we perform gradient optimization in the latent space to
minimize reconstruction error in the image space, as introduced in [3]. Specifically, the denoised
output image Idenoised = G(zopt) where G is the trained generator and zopt is defined:

zopt = argmin
z
‖Inoisy −G(z)‖22 (2)

While the optimization step seeks to minimize reconstruction error with respect to Inoisy, the true
task is to minimize the reconstruction error ‖Iclean − Idenoised‖22. However, Iclean is not available
during training. A central hypothesis of the denoising approach presented here is that G(zopt), the
image closest to Inoisy in the range of the GAN, is very similar to Iclean. This hypothesis will be
evaluated below.

3.2 Algorithm

3.2.1 GAN Architecture

The design of our GAN architecture was largely inspired by Radford’s DCGAN paper [14]. Shown in
figure 2, our generator model consists of a series of deconvolutional layers that takes an input random
latent vector and outputs a 512× 512 image.

Figure 2: Generator Architecture

Our disciminator architecture uses a series of convolutional layers that takes in a 512× 512 image
and outputs the probability of the input image being real. As suggested by the trials from the
DCGAN paper, pooling layers were not used to downsample or upsample the images. Instead,
strided convolutions were used. This allows the network to learn its own spatial sampling. Batch
normalization was applied at each layer in both models to help stabilize the training process, except
for the output layer of the generator and the input layer of the discriminator [14]. Through the
DCGAN paper findings, ReLu activation was used in the generator except for the output layer which
uses the Tanh function to return it to the input data range of [−1, 1]. Leaky ReLu was used in the
discriminator with the Sigmoid function for the output layer.

3



The 2 models work together during the GAN training. The Binary-Entropy loss function is used to
update the model weights

`(x, y) = L = {l1, . . . , lN}>, ln = − [yn · log xn + (1− yn) · log 1− xn] (3)

which provides the calculation of both log components in the objective function, log(D(x)) and
log(1 − D(G(z)). We specify what part of the BCELoss equation to use with different y inputs
during training. Two separate Adam optimizers were also set up, one for the generator G and one for
the discriminator D. The entire GAN training progress is presented in algorithm 1.

Algorithm 1: GAN training
1 for each epoch do

// update D: train with real batch
2 output = nedD(real-images)
3 calculate loss `(output, 1)

// update D: train with real batch
4 noise = a random latent vector
5 fake-images = netG(noise)
6 output = neD(fake-images)
7 calculate loss `(output, 0)
8 add the 2 errors together
9 update netD weights

// update G
10 output = netD(fake-images)
11 calculate loss `(output, 1)
12 update netG weights
13 for every 50 epochs do
14 generate fake images on fixed

random vectors
15 end
16 end

Algorithm 2: GAN optimizer
Input: Noisy image Inoisy , Generator G()

accepting as input z ∈ N(0, 1)d

1 for i = 1 to 10 do
2 Initialize zi ∈ N(0, 1)d

3 for epoch = 1 to mepochs do
4 Generate image IG = G(zi)
5 Calculate Loss

`(Inoisy, IG) = ‖Inoisy − IG‖22
6 zi ← zi − α∇z`
7 end
8 end
9 Select zopt = argminz ‖Im− ImG,i‖22

10 Reset epoch = 0
11 while (epoch < nepochs) & (` > ε) do
12 Generate image IG = G(zopt)
13 Calculate Loss:

`(Inoisy, IG) = ‖Inoisy − IG‖22
14 zopt ← zopt − α∇z`
15 epoch← epoch+ 1
16 end

Output: Iopt = IG

3.2.2 Optimizer Algorithm

The optimization problem seeks the minimum defined in Eq(2). Eq(2) is not a convex problem, so the
optimization algorithm is susceptible to finding local minima. To mitigate this concern, the algorithm
is composed of two optimization phases. In the first phase, multiple latent vectors are randomly
initialized and a small number of optimization steps are performed on each. In the second phase,
the latent vector with the lowest reconstruction error is optimized further. While not theoretically
guaranteed, this approach was found empirically to arrive at similar denoised images over multiple
trials with only moderate, incremental computational expense. Algorithm 2 describes the approach in
detail. Figure 12(b) illustrates the sampling and selection aspects of Algorithm 2.

Notably, the GAN optimization approach presented here does not make any assumption about the
noise mechanism in images. This is in contrast to supervised approaches that are trained to operate
on a specified type and level of noise.

3.2.3 Baseline: Supervised Denoising Base

We compare the performance of the GAN denoiser with the supervised denoiser of [12]. This denoiser
is trained on the same simulated images as the GAN (described below) with a Poisson(1) noise
level. The denoiser architecture follows the UNet architecture [15]. The model was provided with
pre-trained weights by the authors, although the provided model was trained to generalize to real
microscope images (via training data distortions), which likely hindered performance on the simulated
data.

4



4 Experimental Evaluation

4.1 Data

4.1.1 Microscope Data

Three thousand simulated grey-scale electronic microscope images of shape 876× 927 were used to
train the Generative Adversarial Network [12]. The pixel values of the input images are in the range
of [0, 1], and are re-scaled to [−1, 1] since it has showed in related literature to help with training
[14]. Since the Generator is designed to output 512× 512 images, random 512× 512 patches were
cut from the input images. As opposed to resizing the images which might cause loss of information
and skew the atomic structure of the atoms, cutting random patches avoids these issues and increase
the robustness of the model. Figures below shows an example of the original input image and the
random patches cut from the input image.

Figure 3: a random training sample Figure 4: a randomly cut patch

The generated patches were scaled back to its original range of [0, 1] for denoising optimization.

Simulated electronic microscope images that were not in the training set for the GAN were used for
denoising purposes. A 512× 512 patch was cut from each image, and noises from both the Poisson
and Gaussian distribution were added with different noise levels. Figure 5 shows an example of a
image patch with different noise levels.

Figure 5: image with different noises added to be used for denoising

The real microscope data comes in video format with 40 frames of images with size 1215× 1208
pixels. The images used for denoising herein are randomly cropped 512× 512 pixel images of stills
from that video with no additional scaling.

4.1.2 Natural Image Data

The optimizer algorithm was initially tested using the well-studied DCGAN generator on natural
images before applying to microscope data. 50,000 natural images of size 32x32 pixels were randomly
chosen from CIFAR100 [8] and used to train two DCGAN models: one model with rgb color channels
and one model in grayscale. Both models used all 50,000 images for training.

4.2 Methodology

4.2.1 GAN Training

Generators were trained over 3 different latent dimensions of 50, 100, and 150 to generate the
512× 512 microscope image. Both the generator model weights and the discriminator model weights
were initialized from a Normal distribution with mean=0, stdev=0.02 [14]. The Adam optimizer [7]
with a learning rate of 0.0002 and a momentun of 0.5 was used for both models for weight updates

5



An initial training of the GAN did not yield satisfactory results. GANs are notorious for being hard
to train since both the generator model and the discriminator model are trained concurrently in a
zero-sum game. This means that improvements to one model come at the cost of the other. Since
there is no objective loss function, there is no way to objectively assess the progress of the training
and the quality of the model purely by the value of the losses. Thus, the training of the entire network
involves finding and arriving at an equilibrium between the two competing goals, which we can see
from figure 6 did not happen with our training since our losses failed to converge.

Figure 6: losses from the initial GAN training

The lack of an objective loss function also means that the training progress must be inspected using
the quality of the generated images at each step. The objective evaluation of the generator remains an
open problem in the field, and although many methods such as kernel estimations [14] have been
explored, many of them showed little to no relevance with model performance [2]. Thus, many fall
back to manual inspection of images through out the training process, which remains one of the most
common and intuitive ways to evaluate GANs. Shown in figure 7, the initial trianing of the GAN did
not learn to generate any atomic structures, only the vacuum background, which confirms the bad
model performances we expect from observing the loss curves.

Figure 7: generated images from the initial GAN on the right

When the 2 losses of the GAN failed to converge, the model enters what’s called the failure mode.
Failure mode typically happens when the discriminator gets too good too fast. So it will always be
able to distinguish between generated and real samples, giving it a loss of 0, and which will mean that
there’s is no more loss gradients flowing, and the weights stop getting updated for the entire network.
To promote a stable training process, we have imposed the following training scheme modifications.

4.2.2 GAN training modifications

The first and most intuitive modification we made was re-designing the discriminator architecture
to be symmetric to the generators, as a similar number of parameters in the model should provide a
even ground for the competition. Figure 8 shows an updated discriminator structure.

6



Figure 8: updated discriminator architecture

Then, we removed the last Sigmoid() activation function from the discriminator, and used
BCEWithLogitsLoss() instead of BCELoss() as our criterion to take advantage of the log-sum-exp
trick for numerical stability [13]. To discourage the discriminator from getting too good at the start
of the training, we incorporated label smoothing where we set the label to the real images to 0.9
as opposed to 1. Label smoothing is a technique to discourage the discriminator from being over
confident about its classification [4]. After these modifications, we noticed that the GAN losses have
started converging, and the images generated look realistic compared to true microscope images.

Figure 9: training losses after modifications

Upon closer observation, however, we noticed that the same images (enclosed by red boxes) was
repeatedly generated from different random vectors shown in Figure 10.

Figure 10: real Vs. fake images generated by the GAN after modifications

This is another common issue encountered in GAN training called model collapse. To overcome this
issue, we employed the Two Time-Scale Update Rule (TTUR) proposed by Heusel et al. in 2017
[6]. We increased the learning rate for the discriminator to 0.0004 and decreased the learning rate for
the generator to 0.0001. By forcing the generator to take smaller steps, we prevent it from choosing
convenient yet imprecise solutions to win the adversarial game.

7



Figure 11: real Vs. fake images generated by the GAN after TTUR

The best performing generator model for each of the three different latent vector dimensions was
selected for denoising applications. Now that we have obtained a fairly good generator, we can move
on to the next objective of our project.

4.2.3 Optimizer Training

Previous work on GAN optimization only considered small images: [10] did not test on images larger
than 32x32. To ensure that the approach was viable for the much larger microscope images, the
optimization algorithm was applied to images with incrementally greater dimensionality:

1. Clean, grayscale, 32x32 pixel CIFAR100 images
2. Clean, color, 32x32 pixel CIFAR100 images
3. Clean, grayscale, 512x512 microscope images
4. Noisy, grayscale, 512x512 microscope images

A DCGAN architecture [14] trained for 500 epochs was used as the generator for the CIFAR100
images. The GAN described in 3.2.1 and 4.2.1 was used as the generator for microscope images.

Two tasks were performed for each image category. First, the optimizer was given a target image
generated by the GAN. This task removes any dependency on the diversity of the GAN image space
and tests only the optimizer, as the optimal image is known to be present. Second, the optimizer was
given a target image not generated by the GAN and not present in the training data. The second task
reflects the true application of the optimization algorithm. The optimizer successfully completed the
first task to arbitrary precision for all image categories. For brevity, the Results will focus on the
second task for noisy microscope images, as this is the aim of the overall project.

A variety of gradient-based optimizers and learning rates were considered. The Adam [7] optimizer
with a learning rate of 0.01 was found to be most effective for all tasks and image categories.
Figure 12(a) compares PSNR learning curves for multiple optimizers. Algorithm 2 was run with
mepochs = 1, 500 and nepochs = 10, 000. Figure 12(b) shows the learning curves on the denoising
microscope image task for latent dimension 50.

4.3 Results

The GAN optimization approach was applied to denoising both simulated and real electron microscope
data. The GAN denoiser is quantitatively compared with the supervised denoiser baseline on simulated
data at a variety of noise levels. No clean images exist for the real electron microscope data, so
performance cannot be quantified or usefully evaluated.

Peak signal to noise ratio (PSNR) is commonly used to quantify the performance of denoising
algorithms and is defined:

PSNR = 10 ∗ log10(
max(Ip)

2

MSE
) (4)

8



Figure 12: PSNR learning curves for a) different optimizers and b) twn samples of Algorithm 2. Both
applied to GAN with latent dimension 50 over 10,000 epochs.

where Ip is the maximum pixel intensity of the true image and MSE is the pixel-wise mean squared
error between the denoised image and the true image. Section 4.3.1 will use the PSNR to compare
the performance on various denoising tasks.

4.3.1 Simulated Noise

Figure 13 compares the performance of the supervised and GAN denoisers on simulated noisy
microscope images. Poisson and Gaussian noise at various levels is considered. The GAN denoiser
with latent dimension 50 ("GAN50") achieves a higher PSNR than the other GAN denoisers, as
well as the supervised denoiser for all noise levels except Poiss(1). The supervised denoiser was
trained for Poiss(1) noise and is not intended to be applied at different or unknown noise levels, so
this result agrees with expectation. GAN50 generalizes exceptionally well, achieving PSNR levels
27.6-27.7 for every noise level except Poiss(1). Qualitatively, images generated by GAN50 are less
blurry than those from the supervised denoiser, validating the motivating hypothesis that adversarial
loss denoisers can capture finer detail than MSE based denoisers. However, the GAN50 images do
not match the atomic structure of the original, with more rows of slightly smaller atoms. Since the
optimizer found similar images for each noise level, this likely indicates that this is in fact the closest
image in the range of the GAN (i.e. the optimizer was successful) but that the GAN does not have
sufficient diversity to generate an image with the correct atomic structure.

As an additional baseline, [12] states that the supervised denoiser can achieve a PSNR of 38.05 for
Poiss(1) noise. We were unable to replicate that result, likely because the pre-trained model applied
in this paper was optimized for real images.

4.3.2 Real Electron Microscope Images

Figure 14 shows denoised images corresponding to real microscope images. As no clean image exists,
PSNR cannot be calculated. Qualitatively, the results agree with the simulated results above. The
supervised denoiser appears to more closely match the atomic structure, but the GAN denoiser (for
latent dimension 50) is far less blurry. Microscope images are often modeled with Poisson noise, so it
is possible that the noise in the microscope image is close to the noise range in which the supervised
model was trained. Because the real noise level is not fully understood, we cannot test how the
denoisers generalize to different noise levels in real images.

4.4 Discussion

The mismatch of atomic structures outputted by the GAN optimizer shows the challenges of GAN
based denoising. GANs are hard to train and evaluate as is, when used for denoising purposes, it
becomes ever so important that it be able to not just generate realistic images, but be able to do so
across every possible input in the latent domain. Intuitively, longer training of the GAN should train
it to cover more latent space. However, in actual implementation, we noticed signs of model collapse
for large epochs as opposed for smaller epochs, even with our modification efforts to prevent it from
doing so. When exhibiting signs of model collapse, even if the GAN is capable of generating images
across the entire domain, the limited variety of the images would still hinder denoising efforts.

9



Figure 13: Denoising results across various simulated noise levels (top) for supervised (middle) and
GAN denoiser with latent dimension 50 (bottom).

Figure 14: Multiple denoisers applied to real microscope image.

We also take a note to recognize that the generator with a latent dimension of 50 out-performed latent
dimensions of 100 and 150. This is a very interesting observation. On a high level, we suspect that
since the 50 dimensional latent space is much smaller than 100 or 150, our generator covered the
smaller space and mapped them to images much better than the larger spaces. Therefore, when we
performed our optimization, most points on the S50 maps to good images but most points on S150
may not. However, since high-dimensional latent spaces are hard to understand, the exact reason for
this phenomenon will require more extensive analysis.

Overall, when compared to the MSE denoiser results, GAN generated clean images from the 50
latent dimension (shown on the third row in figure 13) resulted in a better PSNR across most noise
levels, and visually the images look much clearer as well, with the features of the atoms being clearly
represented. GAN generated clean images also preserved the contrast between atomic structure and
background vacuum of the underlying clean image, which is something the MSE based denoiser
could not recover as distinctly. This confirms our hypothesis that GAN based denoising would yield
clean images that look more realistic. The bad performance of the GAN on denoising Poisson(1)
noise can be understood, as it is a much larger noise than the others. It is also the only noise level
where the MSE result won over the GAN results, although by a small margin. This is also expected

10



since the MSE denoiser specifically trained for this noise level. But the consistent winning of GAN
results for all other noise levels shows the robustness of the GAN based denoiser in its ability to
generalize. In reality, this robustness will serve to be much more valuable, as noise levels in actual
images will vary due to different machines and the inconsistency in human operations.

5 Conclusions

The results described above indicate that latent space optimization of GAN models has potential
value for image denoising if the GAN model can generate sufficiently diverse images. Specifically,
the image Idenoised that minimizes reconstruction error with Inoisy is also similar to Iclean. Further,
the approach generalizes across noise types and levels better than supervised denoisers. The GAN
denoised images are less blurry than the MSE-basd supervised denoiser. Lastly, previous literature on
GAN denoising focused on small, natural images. The results here indicate that the approach can
viably extend to larger, application-specific images (e.g., electron microscope images). Overall, our
hypothesis is supported by the results, and our GAN based denoiser showed promising potential.

The results also indicate a number of directions worthy of exploration. Quantifying the diversity of
GAN output is a non-trivial problem. An objective evaluation metric of GAN models remains an
unsolved problem in the field since there is no consensus as to which measure best captures strengths
and limitations of models and should be used for fair model comparison [2]. Manual inspection is an
intuitive and commonly used metric, but it is subjective and time-consuming. Although many current
metrics, such as nearest neighbor and average log-likelihood, have been explored, nearly all lack the
capability to objectively assess the overall performance of the model [2].

Recent state of the art methods such as the Frechet Inception Distance (FID) show promising
qualitative results consistent with human judgement. Calculating an FID score requires a trained
Inception V3 model, the parameters of which must be summarized as a multivariate Gaussian for
both the real and generated image. The distance between the two distributions is then computed using
the Frechet distance to indicate model performance [6]. Generating an FID score for microscope
images is a promising future direction for improving GAN performance, and together with manual
inspection, should help us in developing a more capable GAN that can lead to closer optimization
results.

Another possible approach to denoising microscope images would be to condition the GAN on the
microscope parameters (e.g., focal length, pose) to provide greater control (and potentially generate
greater diversity) over the generated images. Approaches to consider would be conditional GANs or
embedding the parameters in the latent space.

Currently, we do not have access to a bias-free version of the MSE denoiser that is trained on the
microscope data. However, it will be an interesting future exploration for comparing its results to the
GAN based denoising results to see if the advantage of the generalizability of the GAN still remains
over the MSE results. With this result, further analysis into the performance, robustness, training
difficulty, and etc. between the two methods can help evaluate the future potential of GAN based
denoising.

6 Lessons Learned

While building the optimizer, the biggest difficulty was knowing whether or not it was finding the
best image. In many cases, the optimized image was not very similar to the target, but the cause
of the discrepancy was not obvious. This led us to develop the suite of optimizer tests described in
Section 4.2.3 so that we could be confident that the optimizer was performing well in the unexplored
context of microscope images. Diagnosing the reason that an approach is failing is a much harder
task in practice than in the classroom setting, and this was a prime example of that.

We also learned (as many others have) that GANs are very difficult to train effectively. We tried a
number of heuristics that are suggested in the literature and by practitioners. Besides the successful
modifications detailed in the Methodology, many trials failed to improve the GAN such as increasing
the capacity for both models, selecting different loss functions, changing the weight update schedules,
and etc. Through experimentation we finally arrived at a set of hyperparameters and a training scheme
that worked, though later attempts to retrain did not always succeed. While very powerful, GANs

11



remain poorly understood in both theory and practice. Many recently proposed and state of the art
models in data science pose the same problem of a lack of understanding of its precise mechanism
behind its intuition. As a result, it is often impossible for researchers to know exactly what to do
to improve their training and results. As we learned from this project, it requires patience and an
extensive search of literature to achieve desirable results through trial and error.

Acknowledgements

The authors would like to acknowledge our advisors, Carlos Fernandez-Granda and Sreyas Mohan,
for their guidance, helpful discussions, and assistance with the data and code infrastructure.

References
[1] A. Bora, A. Jalal, E. Price, and A. Dimakis. Compressed sensing using generative models. International

Conference on Machine Learning, pages (pp. 537–546), 2017.

[2] A. Borji. Pros and Cons of GAN Evaluation Measures. arXiv e-prints, art. arXiv:1802.03446, Feb. 2018.

[3] A. Creswell and A. Bharath. Inverting the generator of a generative adversarial network. IEEE Transactions
on Neural Networks and Learning Systems, 30(7):1967–1974, 2018.

[4] I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv e-prints, art.
arXiv:1701.00160, Dec. 2016.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative Adversarial Networks. arXiv e-prints, art. arXiv:1406.2661, June 2014.

[6] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained by a Two Time-
Scale Update Rule Converge to a Local Nash Equilibrium. arXiv e-prints, art. arXiv:1706.08500, June
2017.

[7] D. Kingma and J. Ba. Adam: A method for stochastic optimization. Arxiv preprint, 2014.

[8] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images (cifar100 dataset),
2009.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2020.

[10] Z. Lipton and S. Tripathi. Precise recovery of latent vectors from generative adversarial networks.
International Conference on Learning Representations, 2017.

[11] S. Mohan, Z. Kadkhodaie, E. Simoncelli, and C. Fernandez-Granda. Robust and interpretable blind
image denoising via bias-free convolutional neural networks. Proc. International Conference on Learning
Representations (ICLR), 2020.

[12] S. Mohan, R. Manzorro, J. Vincent, B. Tang, D. Sheth, E. Simoncelli, P. Crozier, and C. Fernandez-Granda.
Deep denoising for scientific discovery: A case study in electron microscopy. Preprint, 2020.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[14] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. arXiv e-prints, art. arXiv:1511.06434, Nov. 2015.

[15] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
International Conference on Medical image computing and computer-assisted intervention, pages 234–241,
2020.

[16] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series: with engineering
applications. Technology Press, 1950.

[17] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, 2017.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Contributions

Chuan processed the microscope training data and built and trained the GAN. Michael built the optimizer,
validated it on natural images, and ran the benchmark, MSE denoiser. Both contributed equally to the paper. The
code for methodologies described in the paper can be found on our Github repository

A Appendix: DCGAN optimization for CIFAR100 images

A.1 Grayscale Images

Figure 15: PSNR Curves for different optimizers and learning rates on grayscale CIFAR100 images

Figure 16: Image reconstruction via GAN optimization

Figure 16 shows the output of the optimizer with a target image not generated by the GAN. Figure 15 shows the
PSNR learning curves for various optimizers.

A.2 RGB Color Images

13



Figure 17: PSNR Curves for different optimizers and learning rates on grayscale CIFAR100 images

Figure 18: Image reconstruction via GAN optimization

Figure 16 shows the output of the optimizer with a target image not generated by the GAN. Figure 15 shows the
PSNR learning curves for various optimizers.

14


	Introduction
	Related Work
	Generative Adversarial Networks
	Image Denoising
	Generative Models for Inverse Problems

	Problem Definition and Algorithm
	Task
	Algorithm
	GAN Architecture
	Optimizer Algorithm
	Baseline: Supervised Denoising Base


	Experimental Evaluation
	Data
	Microscope Data
	Natural Image Data

	Methodology
	GAN Training
	GAN training modifications
	Optimizer Training

	Results
	Simulated Noise
	Real Electron Microscope Images

	Discussion

	Conclusions
	Lessons Learned
	Appendix: DCGAN optimization for CIFAR100 images
	Grayscale Images
	RGB Color Images


