INPAINTING CONVOLUTIONAL NEURAL NETS: GLOBAL AND LOCAL ANALYSIS

Alexander Dong, (awd275), Michael Stanley (mhs592)

1013: Math Tools for Data Science

1. INTRODUCTION

Recent accomplishments by convolutional neural nets (CNNs)
have spurred an increased interest in designing novel CNN ar-
chitectures. However, neural nets in general, and convolutional
neural nets in particular, still lack interpretability. Tools for ana-
lyzing these models are lacking. In this report, we present two
approaches for analyzing the inner workings of a CNN model
that was trained on the inpainting task. The first approach is a
global approach using Principal Component analysis, and the
second approach is a local approach using Jacobian Analysis of
a bias-free CNN. The global approach allows us to compare the
principal components of reconstructed images and the origin-
als and the energy captured in the first few principal compon-
ents. The local approach visualizes the impact of input pixels on
particular reconstructed, output pixels, and quantitatively com-
pares the locality of the inpainting model for different mask
sizes.

These analyses shed light on how the “black box” CNN is learn-
ing to perform the task of inpainting, and how it compares to
traditional methods such as diffusion and exemplar methods.

2. STATE OF THE ART

This paper focuses on the introspection of an inpainting CNN
algorithm and does not attempt to improve upon performance.
Inpainting models are typically evaluated with the peak signal
to noise ratio (PSNR) on a benchmark dataset. We will not
report PSNR benchmarks below as it is not pertinent to the work
of the paper, but the following provides a contextual history of
inpainting and bias-free CNNs.

2.1 Inpainting

Inpainting is a classic problem in image processing. Inpainting
is the act of inferring (“filling in”’) an unknown region of an im-
age (or other signal). Applications of inpainting include repair-
ing damaged images, removing unwanted objects in images, or
filling in parts of an image that were blocked. An example of
inpainting is shown in Figure 1.

There are two traditional approaches to inpainting: diffusion
methods and exemplar methods. Diffusion methods extend ad-
jacent patterns (with an emphasis on extending isophote lines of
equal gray value) and textures into the unknown region by solv-
ing a partial differential equation describing color propagation
(Bertalmio et al., 2000). These methods iterate from the border
to the center of the unknown region. The approach described in
(Telea, 2004) implements the fast marching method to improve
computational performance and was widely adopted.

While diffusion methods are inherently local, exemplar-based
methods ("patching”) identify similar patches elsewhere in the
image and copy them into the unknown region. (Criminisi et al.,
2003) extends texture synthesis methods to inpainting. (Wong,
Orchard, 2006) extracts multiple exemplar samples from the

-
=

- =

16x16 gap

G4x64 gap

Figure 1. Masked input image before and after masked region
reconstruction for 16x16 (left) and 64x64 (right) mask size.

image and combines them by a similarity score weighting ap-
proach. (Barnes et al., 2009) introduced an algorithm that facil-
itates searching entire images for similar exemplars.

Recently, convolutional neural networks and generative ad-
versarial networks have been put to use in inpainting. (Pathak
et al., 2016) uses an encode-decode framework that attempts
to encode semantic features (in a single receptive field) from
the input image, and use the semantic features to reconstruct
the missing pixels. (Wang et al., 2018) introduce a generative
multi-column similar to (Pathak et al., 2016) except with dif-
ferent columns representing different receptive fields. PEPSI,
described in (Sagong et al., 2019), combines a single encoding
network with multiple, parallel decoding networks to improve
computational performance and inpainting quality. The model
appears to improve upon benchmarks on the CelebA dataset we
use in this paper.

2.2 Bias-Free Convolutional Neural Networks

This paper applies linear algebraic analysis techniques to the
Jacobian matrix of a bias-free convolutional neural network
trained for inpainting. This paper follows two approaches ap-
plied to denoising in (Mohan* et al., 2020): i) interpreting the
magnitude of elements of the Jacobian as weights on the input
pixels for each output pixel and ii) performing a singular value
decomposition of the Jacobian.

3. METHODOLOGY

3.1 Context Encoder CNN

We modified and trained a bias-free version of the Context En-
coders model described in (Pathak et al., 2016). This model was
chosen because it is near the state of the art in inpainting, and
the architecture lends itself to the removal of bias. We trained
over 100,000 images in the CelebA Faces Dataset (Liu et al.,
2015). The original paper did not apply Context Encoders to
faces. Each image was 128x128 pixels, with a centered 64x64
pixel mask, or a centered 16x16 pixel mask. Bias terms were
removed from each layer of the neural net to attain the local
linearity described in Section 3.3.

3.2 Principal Component Analysis

For the “global” portion, we analyzed results over 1000 images
in a holdout set. We first computed the pixel-wise eigenvalues
and eigenvectors of the original images and reconstructed im-
ages for the centered 64x64 pixel masks. Each entry of an ei-
genvector represents a coefficient for a single pixel coordinate.
In total, there were 4096 eigenvectors each with 4096 entries.
In total, there are two sets of eigenvalue/eigenvectors - one set
for the original set, and one set for the reconstructed set.

We compared the relationship of eigenvectors for the original
and reconstructed images. We projected Context Encoder’s re-
constructed images onto the original image set’s eigenvectors,
which provide qualitatively better reconstructions than Context
Encoder’s reconstructions. We also examine the amount of en-
ergy that is captured by the projected reconstructed images.

3.3 Bias-Free Jacobian Analyis

(Mohan* et al., 2020) shows that, for a bias-free convolutional
neural net using Rectified Linear Unit (ReLU) activation func-
tions is locally linear, and can be represented by a matrix trans-
formation. For the Context Encoder used in this paper:

fBr(y) = Wr(Ricaky(Wr—1...Ricaky(W1y)) = Ayy (1)

where fgr is the reconstructed region, W; is the weight matrix
for layer i, Rjeqky 1S the leaky ReLU activation layer, and y is
the 128x128 pixel masked input image'. The dimensionality is
as follows:

y c R128X128 (2)
Ay c Rm)(m)(l28><128 (3)
fBr € R™*™ “)

where m x m is the size of the masked region (m € {16,64}
here).

Ay is the Jacobian of the Context Encoder at input image y. For
an output pixel z = (¢, j)|i,j € {0, ..., m — 1}, we can express
Z as:

z=Ay Y &)
Aya[i»j] =4, [ivjv 5 :} (6)

where A, [; ;; € IR'***'?*. The elements of A, |; ; repres-
ent the weights of each input pixel on the output pixel z. The

I The Context Encoder uses leaky ReLU activation functions, which
provide the same local linearity as ReL.U activation functions.

spatial distribution of the large weights over the input image re-
veals how the Context Encoder is filling pixel z. If the weights
are only large near z, the Context Encoder is highly local at
point z. If the weights are comparable across the input region,
the Context Encoder is using more information from across the
input image.

To quantify locality, we define ¢,, as the ratio of the Frobenius
norm of an inner window of A, [; ;) to the Frobenius norm of
A

TACTIE

HA;p[)z' allr
¢p = ———— , where p € [0,1] @)
1Ay i1l
A = Ay [18 em LSopm 128 4pm) (3)

Intuitively, ¢, is higher if the pixels near the masked region are
heavily weighted relative to the rest of the input image. Figure

2 illustrates A;’j [)Z il
128
A
r N\
P n
M &
y ¢) Il)
Ay 1i4] Ay i

Figure 2. A?(f[)i il is the inner window of pixels from the masked
input image.

The focus of the bias-free Jacobian analysis is how A, |; ;) com-
pares for different output pixels [¢, j] (e.g., corner, edge, cen-
ter) and for different sizes of the masked region. High locality
would imply that the Context Encoder is emulating a diffusion
model where nearby pixels are weighted most heavily for in-
painting. Large weights elsewhere in the image would indic-
ate either an exemplar method or perhaps that the CNN has
learned about the broader structure of images during training
(“context’).

4. RESULTS
4.1 Principal Component Analysis

Figure 3 presents an overview of the Top 10 eigenvectors from
both the (cropped) original and (cropped) reconstructed image
sets. Firstly, one should notice that the “eigenimages” in the
original dataset strongly resemble faces, and this observation is
fundamental to the rest of the work in this section. A visual
overview of the “eigenimages” in both the original and recon-
structed image sets suggest that the “eigenimages” might be

Original Image Set: Top 10 eigenvectors: level = 0

AOE M
|

Recenstructed Image Set: Top 10 eigenvectors: level = 0

w8 1 1=
RAZED

Figure 3. Top 10 Eigenvectors for over the original images and
reconstructed images. Images were reconstructed using the
Context Encoder CNN architecture. There were a total of 1000
images in the holdout set. The images were originally 128x128
pixels, and the images shown are the 64x64 center that
correspond to the masked pixels.

similar. This suggests that the CNN was able to properly learn
the semantic features of faces, well enough that the “eigenim-
ages” in the reconstructed image set resemble those in the ori-
ginal image set.

Figure 4 shows the cosine similarity of the eigenvectors in the
original image set versus the eigenvectors in the reconstructed
image set. We can see that the first few eigenvectors all have
very high cosine similarities. After the 15th eigenvector, the
cosine similarities really start to drop off. This provides some
evidence that the CNN is able to learn semantic features of the
faces in the training set.

Figure 5 shows a spectrum of reconstructed images that have
been projected onto the original image set’s “eigenimages”.
Visual inspection indicates that projecting onto 100 principal
component vectors seems to be where the projected reconstruc-
tions begin to show some resemblance to the reconstructed face.
Using 250 or 500 principal components allows for finer detail to

Cosine Similarity of Principal Eigenvectors: Original vs Reconstructed

N

= = =
T = =
L L)

Cosine Similarity

=
[¥]
L

=
=1
L

0 20 40 60 a0 100 120
Eigenvector# (sorted by eigenvalue)

Figure 4. Cosine similarity of eigenvectors of the original image
set and reconstructed image set (ranked by eigenvalues). In
order to account for sign inconsistencies between eigenvectors,
we show the absolute value of the cosine similarity.

Original Images (Cropped)

Compressed Reconstructed Images (Cropped) (25 Components)

R1EEE

Compressed Reconstructed Images (Cropped) (50 Components)

Compressed Reconstructed Images (Cropped) (100 Components)

=

Compressed Reconstructed Images (Cropped) (250 Components)

Figure 5. Five hold-out images projected on differing numbers

of principal components.From Top to bottom: Original Image,

Reconstructed Image, then projections onto 25,50,100,250 and
500 principal components

Perc Energy Captured for Recons Images Proj on Original Eigenvectors
10

0.8

0.6

0.4

0.2

Percentage of Energy Captured

0.0 . ; . ;
] bl P 0 10 50
Number of Principal Components
Figure 6. Average percent of energy captured for all 1000
holdout set images projected onto the original image set’s
eigenvectors.

A\ifgﬂrage Energy Captured for Original and Reconstructed Datasets

175

= =
=] Ln
[=]

Avg Energy Captured
=]
(=]

75

50

25 — Original
Reconstructed

°% 10 200 %0 200 %0

Mum of Principal Components

Figure 7. Average Total Energy Captured for Original Images
and Reconstructed Images.

be seen (such as the hair, or shadows on the face). Overall, the
reconstructed images do bear some semblance to the original
images, but they grotesquely mess up the fine details. However,
the projected reconstructed images also retain strong semblance
to the reconstructed images, and also a strong semblance to the
original images. We believe that this is a particularly interest-
ing result, and extensions from this observation are proposed in
the Discussion section.

Figure 6 displays the average percentage of energy captured
when reconstructed images are projected onto the original im-
age set’s eigenvectors. Unsurprisingly, the first few principal
components capture the vast majority of the energy, defined in
equation 9.

|[Projq, (Im)]|2

EC =
[Hm||2

©))

Another unrelated result is the figure displayed in Figure 7. This
figure shows that the average energy in the reconstructed im-
ages is noticeably lower than the average energy in the original
images. We’re not exactly sure what the reason is, but we be-
lieve that it’s an artifact of the CNN.

4.2 Local Analysis
The Jacobian matrix of the bias-free Context Encoder was cal-

culated for a few test images with both mask sizes, 64x64 pixels
and 16x16 pixels. Figure 10 shows the weights on each input

pixel for four output pixels and both mask sizes. For context,
Figure 1 shows the masked input and reconstructed images for
both mask sizes.

Corner and edge pixels exhibit high locality, indicating that the
Context Encoder is essentially combining nearby pixels to fill
the mask borders. As we move toward the center of the image,
locality diminishes for the large mask and spreads to all mask
borders for the small image. Figure 8 quantifies this, comparing
¢p for a corner, edge, and center pixel. ¢, is higher for the
edge and corner pixels than for the center, across all values of
p- Surprisingly, ¢, is higher for the edge pixel than for the
corner pixel.

64x64 pixel mask

1a
049
0
<
07 : :
Pixel location
—s— Comer
0.6 edge
—e— center
0s T . . . ;
0.2 04 0.6 08 10

p (portion of input image)

Figure 8. ¢,, for output pixels: corner ([0,0]), edge ([32,63]), and
center ([32,32])

The smaller masked region is more localized than the larger
mask, as shown in Figure 9 comparing ¢, for the center pixel
of both mask sizes. Note that, because the masks are differ-
ent sizes, p represents a different number of pixels for the two
masked regions.

Center pixel
10
Ny /(/,0——,’1
03
<
0.7
Mask size
0o —o— 16x16
64x64
05 : : : ; ;
02 04 06 08 10

p (portion of input image)

Figure 9. ¢,, for center output pixels and both mask sizes.

Interestingly, center output pixels have larger weights on input
pixels in the lower half of the image. This may indicate that the
Context Encoder has learned that the neck is more similar to the
face than the background. The emphasis on the neck pixels may
also explain how the model matches skin color quite well, even
if there are no skin-colored pixels on the upper or side borders
of the masked region.

There is a faint grid pattern to the pixel weightings, perhaps
most evident in the bottom left of Figure 10. The squares
are larger for the 64x64 pixel mask, rougly proportional to the

mask size. While we have not investigated further, this may
be the Context Encoder learning to use an exemplar inpainting
method. However, it could also be an artifact of the Context
Encoder’s convolution window size.

5. DISCUSSION

The PCA analysis seems to suggest that Context Encoder’s re-
constructed images are well represented by their projections
onto the original image set’s eigenvectors. The projected re-
constructed images clearly resemble the reconstructed images,
and perhaps surprisingly, resemble the original image. Further-
more, the projected reconstructed images contain less of the dis-
tortions that are present in the many of reconstructed images.

Analyzing the Jacobian of the bias-free Context Encoder, we
have developed a deeper understanding of how the model trans-
forms the masked input image to inpaint the masked region.
The impact of input pixels is highest in the local region around
the input image, and more localized for pixels near the bor-
der of the masked region than center pixels. Comparing large
and small masked regions, the inpainting mechanics are dif-
ferent: smaller masked regions are more impacted by nearby
pixels, whereas larger masked regions are impacted more by
the broader image.

The work in this paper points to a number of extensions. Ex-
tending the analysis outside of facial images to images exhibit-
ing more patterns would disentangle the findings here from the
nature of facial images (e.g., backgrounds with no information
in the top and sides of the image). The linear-algebraic analysis
can be extended further, notably via a singular value decom-
position of the Jacobian matrix, as reported for denoising in
(Mohan* et al., 2020).

Architecturally, a possible extension would be to investigate
whether the principal components could be integrated into some
form of regularization for the neural net. The reduced distortion
in the projected images in Figure 5 suggest that the CNN is able
to reconstruct the main components of the image, but the image
is ultimately polluted with some sort of noise. Another possible
extension would be to investigate whether the CNN architec-
ture could be modified to integrate the principal components
directly into the training process. As of now, after the CNN is
trained, we hope that the CNN weights somehow encode se-
mantic features; it would be interesting to see if incorporating
the eigenvectors during the training process leads to improved
results.

REFERENCES

Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D., 2009.
Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Transactions on Graphics.

Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., 2000.
Image in painting. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pages
417—424. ACM Press/Addison-Wesley Publishing Co.

Criminisi, A., Perez, P., Toyama, K., 2003. Object removal by
exemplar-based inpainting. CVPR 2, 721.

Liu, Z., Luo, P., Wang, X., Tang, X., 2015. Deep learning face
attributes in the wild. Proceedings of International Conference
on Computer Vision (ICCV).

Mohan*, S., Kadkhodaie*, Z., Simoncelli, E., Fernandez-
Granda, C., 2020. Robust and interpretable blind image denois-
ing via bias-free convolutional neural networks. ICLR.

Pathak, D., Krihenbiihl, P., Donahue, J., Darrell, T., Efros,
A. A., 2016. Context encoders: Feature learning by inpainting.
CVPR.

Sagong, M.-C., Shin, Y.-G., Kim, S.-W., Park, S., Ko, S.-J,,
2019. Pepsi: Fast image inpainting with parallel decoding net-
work. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, to be published.

Telea, A., 2004. An image inpainting technique based on the
fast marching method. Journal of graphics tools., 9(1):23-34,.

Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J., 2018. Image inpaint-
ing via generative multi-column convolutional neural networks.
Advances in Neural Information Processing Systems, 331-340.

Wong, A., Orchard, J., 2006. A nonlocal-means approach to
exemplar-based inpainting. Proc. IEEE Int. Conf. Image Pro-
cessing (ICIP), pp. 2600-2603.

. 64x64 mask: [0, 0] . 64x64 mask: [8, 8]) 64x64 mask: [32, 32] . 64x64 mask: [32, 63]
20 20 20 0
40 1‘- 40 o 40 40
60 80 &0 80
80 80 80 80
100 100 100 o 100
120 120 120 120
0 0 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
. 16x16 mask: [0, 0] . 16x16 mask: [3, 3]) 16x16 mask: [8, 8] . 16x16 mask: [8, 15]
20 20 20 0
40 40 40 40
) ‘!r.u, 60 'r 'n 60 _. e I &0 h v
{ L.-.-*.. k . e e
80 80 80 a0
100 100 100 100
120 120 120 120
0 0 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
[i] T
=013 -0.10 -0.05 000 0.05 010 015

Figure 10. Input pixel weightings for 64x64 mask (top) and 16x16 mask (bottom). Pixel indices indicated on the images,
corresponding to i) top left, ii) diagonally in from top left, iii) center, and iv) middle right edge. Input image is the image from Figure
1.

