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Problem Description

Denoising:

e Recovering the underlying, clean image from
a noisy image
e Most approaches to denoising today use

mean squared error (MSE) as a loss function eseses
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e Train a GAN that generate realistic clean
microscope images

e Find the latent vector that generates a clean
image which resembles the noisy image

Yang, Qingsong, et al. "Low-dose CT image denoising using a generative adversarial network with Wasserstein
distance and perceptual loss." IEEE transactions on medical imaging 37.6 (2018): 1348-1357.



Generative Adversarial Network
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e 3 different latent space: latent vectors of dimension 50, 100, and 150
e all model weights are randomly initialized from a Normal distribution with mean=0,
stdev=0.02



Loss

Training GAN
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Generator and Discriminator Loss During Training
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Modifications to help with training

e Symmetric Architecture on the Generator and Discriminator
e Normalize input to range [-1, 1]
e Removing the sigmoid() layer and using BCELogitLoss
o Taking advantage of the log-sum-exp trick for numerical stability
e Label smoothing
o using targets for real examples in the discriminator with a value of 0.9
e Two Time-Scale Update Rule

o using different learning rates to converge to the Nash Equilibrium



Updated GAN

Generator and Discriminator Loss During Training
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Generated Images

Real images Fake images G's Progression



https://docs.google.com/file/d/1aITWV_akyPOsV8cfwAgScC7yVg_y8EfS/preview

Denoising by optimization in GAN latent space
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Optimizer algorithm

PSNR curve, z=100
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e To avoid local minima, the optimizer
o samples the latent space at random =«
o performs brief gradient optimization
o optimizes from the best sample
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e Fairly similar results across iterations :
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e Optimizer typically converges within &
20,000 epochs
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Denoising Results

PSNR: 27.66 PSNR: 27.71 PSNR: 27.64 PSNR: 22.72 PSNR: 27.66 PSNR: 27.64 PSNR: 27.61

S
[}
Zz .2
<0
©F
a

Benchmark: The best supervised MSE denoisers can achieve PSNR > 30 for Poiss(1)
o Does not generalize across noise levels

e GAN denoiser works very well, except in the most extreme noise setting
o Generalizes across noise levels without prior knowledge (unlike MSE denoising)
o Finds very similar images regardless of noise level




Denoising real microscope data

Original - Real Image Supervised Denoising
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e No benchmark, no ground truth!
e Noise levels are extremely high

e Believed to be Poisson distributed (dependent on pixel values)






Denoising Results (incl MSE denoiser)
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Electron Microscope Data

Electron Microscope images Broader project context
e 40 actual images (1200x1200 pixels) e Microscope imaging seeks to capture catalytic
e 20,000 simulated images (850x850 pixels) processes

e Images are of 3D structures, goal is to predict 3D
structure from 2D images

Electron microscope Images )
P 9 Artifact atoms

enoise




GAN optimizer approach

e To validate that the optimization approach works, we first tested on MNIST and CIFART00
o 32x32 images, gray and RGB
o Trained a DCGAN for 500 epochs

e We evaluated a range of optimizers, learning rates, and schedulers
o Adam with learning rate 1e-2 consistently worked best

e Two optimizer tests
o Test 1: Generate an image with the GAN, try to recover the same latent vector from a random
initialization
o Test 2: Select random image NOT in GAN, try to recover the latent vector mapped to the
nearest image in the range of GAN



CIFAR 100 with color

Test 1: Recover image generated by GAN

. True image . Initialized image . Predicted image

100 150 200 250 100 150 200 250

Initial Reconstruction Loss: ~1100 Reconstruction Loss: ~3.4




CIFAR 100 with color

Test 2: Approximate image not generated by GAN
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MNIST 32x32 Gray

Test 2: Approximate image not generated by GAN

True image Initialized image
0 0
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Reconstruction Loss < 1e-2



CIFAR100 32x32 Gray

Test 2: Approximate image not generated by GAN

True image Initialized image Predicted image
0
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Reconstruction Loss ~25



