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1. INTRODUCTION

The COVID-19 pandemic has transformed gathering sites into
transmission sites. There is a new need to predict where people
are gathering, in order to enforce social distancing, supply PPE,
and establish guidelines and recommendations. The goal of this
project is to predict changes in foot traffic to points of interest
within key centers of the US pandemic.

Specifically, we aim to predict the year-over-year change in
weekly foot traffic for thousands of specific locations (e.g., in-
dividual stores, airports, etc.) based on the type of business, the
timing of COVID-19 regulations in the area, the demograph-
ics and economy of the surrounding area, and the weather. We
have acquired 15 months of weekly foot traffic data for millions
of locations in the US from SafeGraph. We have incorporated
a number of additional datasets to generate the feature set de-
scribed above.

Predicting change in foot traffic is a regression problem. The
primary focus is on prediction rather than interpretability, so we
evaluate regression models over a range of complexity. The data
has a temporal aspect, as each week is considered a separate
sample, and this temporality is considered when defining new
features, as well as training, validation, and test sets.

We found xgboost to be the best performing model and that
it generalizes well to the test set. The xgboost model clearly
outperformed the linear baseline, with 80% lower MAE on the
validation set. A custom evaluation metric allows the model to
be fairly robust to outliers. Feature importance analysis indic-
ates that features from many different sources improved model
performance.

2. APPROACH

The cornerstone of our approach is the integration of features
from many different datasets in order to construct a holistic
model of changes occurring during the COVID-19 pandemic.
Our analysis is focused on five key urban centers of the US pan-
demic: New York City, Seattle, New Orleans, Detroit, and At-
lanta. The impact of COVID-19 is likely very different between
urban and rural areas. We chose to focus on urban centers so
that urban-rural differences did not outweigh other factors. We
chose cities in different states to emphasize the impact of gov-
ernment regulation on foot traffic. Each row in our dataset rep-
resents a single location-week (e.g., “Starbucks on Water St.,
March 8-14, 2020”). Modeling weekly traffic instead of daily
traffic removes the impact of weekends, and provides a smooth-
ing effect.

Our target variable is the year-over-year change in weekly foot
traffic for the next week. No data from the next week is used
in prediction. For the Starbucks on Water Street example, our
target variable would be:

(# Visits: 3/15-3/21, 2020) — (# Visits, 3/17-3/23, 2019)

1+ (# Visits: 3/17-3/23, 2019) 1

The distribution of our target variable is heavily right-skewed.
The target variable is a percentage change, so has a skewed
range of [—1,400]. In order to prevent the undue influence
of extreme, positive outliers, we experimented with capping the
target variable at different values. (See Table 1.) Baseline tests
were run at several cap levels, to track the impact of changes
on different target distributions. Capping the target variable of
the validation or test set is equivalent to replacing y labels in
the evaluation metric formula with min(y, ¢), where c is the cap
level. Thus, evaluation metrics cannot be compared across cap
levels. We ultimately chose to cap the target variable at 5, cor-
responding to a 500% increase in foot traffic from 2019 to 2020.

Cap mean std min median | max
None | -0.3934 | 3.0143 | -0.9989 | -0.6932 | 584.0
100 | -0.4053 | 2.0663 | -0.9989 | -0.6932 | 100.0
10 -0.4537 | 0.9886 | -0.9989 | -0.6932 | 10.0

5 -0.4787 | 0.7718 | -0.9989 | -0.6932 5.0

2 -0.5152 | 0.5667 | -0.9989 | -0.6932 2.0

1 -0.5419 | 0.4637 | -0.9989 | -0.6932 1.0

Table 1. Distribution of the target variable by cap on outliers.

We used a non-random, time-based split to divide our data into
training, validation, and test sets. We chose this method because
we were predicting behavior in the same places over time, and
wanted to avoid data leakage from future weeks. The training
set spans March 8 - April 4, 2020, the validation set covers April
5-11, and the test set covers April 12-18.

Our baseline model is a simple, un-regularized linear regres-
sion model using only minimal SafeGraph data. Our primary
experiments were the addition of new features, from external
datasets and engineered from the SafeGraph data. We also
experimented with 11 and 12 regularization, Ada-Boost, ran-
dom forests, gradient-boosting, xgboost, and multi-layer per-
ceptrons. Features were standardized before modeling so that
regularization worked consistently across the feature space.

We used 5-fold gridsearch on the training data to evaluate a
host of hyperparameter combinations for each algorithm. For
each model class, the optimal hyperparameters were re-trained
on the full training set and applied to the validation set. A final
model was selected based on mean absolute error on the valid-
ation set, re-trained on the full training and validation set, and
evaluated on the test set. MAE, mean squared error (MSE) and
R-squared (r-?) metrics were calculated for training and valida-
tion, but MAE was used for model selection to reduce the im-
pact of outliers.

Because the data comprise a time series, we experimented with
including features representing several past weeks worth of
data, including previous weeks’ targets. We also experimented
with one-hot encoding of NAICS codes. While NAICS codes
are somewhat directional (111111 is closer to 111112 than it
is to 555555), they are also categorical. After evaluating mod-
els with and without one-hot encoding, we found that one-hot



encoding did not improve model performance, but vastly in-
creased the size of the feature space, and so we removed the
one-hot features.

2.1 Datasets

Below is a list of data sources, a summary of the data they
provide, and a brief description of the data processing per-
formed:

e SafeGraph: Aggregated anonymous location data from
about 35 million mobile devices, detailing visits to about
4 million places of interest in the US.

e Keystone Strategy: non-pharmaceutical (government) in-
terventions

e U.S. Department of Housing and Urban Development:
USPS ZIP-FIPS crosswalk

e New York Times: Daily COVID-19 case and death counts
at the county level.

e United States Census Bureau: Employment and popula-
tion demographics by zip code, number of establishments
by NAICS code and zip code.

e National Oceanic and Atmospheric Administration: His-
torical daily temperature and weather patterns by weather
station.

e CivicSpace Labs: Latitude and longitude of US zip codes,
used to identify nearest weather station.

The features we derived from these datasets are described in
detail in Appendix A.

SafeGraph.  Our target variable was engineered using
SafeGraph Weekly Patterns and Historic Monthly Patterns data.
In order to compare weekly data from 2020 with monthly
data from 2019, we de-aggregated the “visits_by_day” vec-
tor to form one row per day and calculated the daily visit-
ors and other desired features (e.g. number of brands in the
‘same_day_related_brand frequent itemset’ dictionary). Daily
records were then aggregated weekly, replicating the release
schedule of the Weekly Patterns data to ensure that that no
data leakage would occur when lagged features were intro-
duced. During aggregation, we took the first value of location-
based features which do not change over time (e.g., zip code),
summed the number of daily visits to the place of interest (POI),
and took the median of all visit-based features which are con-
stant per week in 2020 (e.g., maximum number of visits to the
POI in any single hour of the week) or per month in 2019 (e.g.
median distance from home travelled by visitors to POI, taken
over all trips in a month). The 2019 and 2020 datasets were then
joined, and year over year change in visits for each location-
week was calculated: ( 2020 visits - 2019 visits ) / ( 2019 visits
+ 1). Note that when calculating the year-over-year change, the
visit numbers were all padded by 1, to prevent division by zero.

The final step in preparing the SafeGraph data was to add
lagged features to improve time-series analysis. First, to ensure
that we could add any arbitrary look-back window, we filtered
the dataset to include only those locations which appeared in
every week of the data. Then, we appended to each week the
next week’s “change_in_visits” feature; this would serve as our
target variable. We also appended all visit-based features from
the next week in 2019. Finally, we added all visit-based features
from the previous week of both 2019 and 2020.

The addition of lagged features reduced the size of our data-
set, as we had to exclude the first and last weeks due to miss-
ing data. Using next-week’s “change_in_visits” feature was cru-
cial for our approach; using visit-based SafeGraph features to
predict the same week’s change in visits would constitute flag-
rant data leakage. The decision to additionally use backward-
looking lagged features was based on the notion that giving the
model access to each previous week would be more valuable
than giving it an additional week of training data from the very
beginning of the pandemic. This trade-off was tested in our
baseline models.

NAICS codes. The North American Industry Classification
System (NAICS) is a coding system used to classify business
establishments by type of economic activity. Since NAICS
codes indicate different levels of detail at different numbers of
digits (the first 2 digits of a NAICS code describe a sector, the
first 3 digits describe a subsector, etc.), we produced 2, 3, 4,
and 5-digit slices of the 6-digit “naics_code” feature and used
each slice as a new feature. Other NAICS code-specific fea-
tures were added as well (e.g., business count by NAICS code
for each zip code).

Government Interventions. We created features for each week
and ZIP code indicating what percentage of the week each in-
tervention was in effect locally. The government interventions
we used as features were social distancing mandates, shelter-
in-place orders, closing of public venues, school closures, and
non-essential services closures. These interventions were se-
lected due to availability of effective start date information for
each of the counties in our dataset.

Weather. Weather data is collected and maintained for indi-
vidual weather stations. In order to generate historical weather
features, we manually determined the closest weather station to
the geographical center of each zip code. Many weather sta-
tions do not store daily weather records, so we filled gaps with
the next nearest weather station where necessary.

US Census Bureau. The Census Bureau reports the number of
establishments in each NAICS code at the zip code level, but
the data is incomplete. Where the NAICS code breakdown was
not available, we filled missing fields by multiplying the overall
number of establishments in the zip code by the average NAICS
code breakdown in the surrounding county. The Census Bureau
also reports number of employed people per zip code, but the
figure is a range (e.g., 500-999). We used the midpoint of each
range as the estimated number of employed people per zip code.

Data Merging. Governmental interventions, COVID-19 case
and death counts, and population demographics were all ini-
tially tabulated by county, not zip code, so we mapped from
county to zip code using the County-zip Crosswalk database
provided by the U.S. Department of Housing and Urban Devel-
opment. Once we had everything tabulated by zip, we joined
these features with the SafeGraph data using the combination
of zip code and week as the join key for a left join.

In total, we generated 63 features for 222,263 location-week
samples.

3. EXPERIMENTS

3.1 Baseline Experiments: Feature Selection and Outlier
Capping

The most basic model we produced was an out-of-the-box, un-
regularized linear regression using only the previous target vari-
able of each week (i.e., ‘change_in_visits’) as its singular fea-
ture. We gradually added features to that simple model: first



the SafeGraph features without any lagged variables, then the
lagged SafeGraph variables, and finally all of the external data.
For each of these datasets, we tested the training and validation
set performance with target outliers uncapped, and capped at 1,
2,5, 10, and 100 (See Tables 4 and 5 in Appendix B.) Findings
are summarized in Table 2.

Best Val R2 | Best Val MSE | Best Val MAE

No cap SG with lag Full dataset Previous target
Cap=100 | SG with lag Full dataset SG with lag
Cap=10 | SG withlag | SG with lag SG with lag
Cap=5 SG with lag | SG with lag SG with lag
Cap=2 SG with lag SG with lag SG with lag
Cap=1 SG with lag Full dataset SG with lag

Table 2. Best model per cap level (SG=SafeGraph)

It’s clear that the baseline model struggles to model outliers.
With no cap on outliers, MSE explodes, as expected. Less ex-
pected is that with no cap, each additional set of variables makes
the validation MAE worse. The parity we see between the pre-
vious target and lag features makes sense, because the previous
target is in fact a lag feature. It seems that these features, most
of which are inherently similar to the actual target variable, are
the only ones which are able to provide the specific variance
necessary to model outliers. At all cap levels besides None,
we find that the addition of lag variables improves validation
performance by all metrics. This finding is significant, because
adding lag variables also corresponds to reducing the size of
the training set by 20%. As discussed above in the “Approach”
section, it is not appropriate to compare evaluation metrics from
different outlier caps, as the caps effectively change the defin-
itions of the metrics. To choose a cap level, we can look for a
natural “elbow” in the data; we find one at a cap of 5 (Figure 1).
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Figure 1. Outlier count for different caps.

At cap=5, MAE and MSE both improve on the training set with
each additional dataset, but they both peak on the validation set
with lagged SafeGraph features, getting worse when external
features are added. This indicates that the regressor is overfit-
ting on the external features.

Moving forward into our experiments with more sophisticated
models, we will use cap=5 and the full dataset, including ex-
ternal features. We suspect that the observed overfit on the ex-
ternal features is due to approximation error. We hypothesize
that non-linear models will be better able to capture these com-
plex relationships, and will indeed benefit from the addition of
external data.

Because the training, validation, and test sets were split tem-
porally and not randomly, the variance of the target variable
differs substantially across them, as shown in Table 3. Models
are only ever compared over the same dataset, so this should
not impact model selection, but it is relevant when discussing

overfitting and generalization to the validation and test sets. In
short, the variance of the validation set is lower than training or
test, which makes models appear to generalize to the validation
set better and to the test set worse than they actually do. The
R-squared metric somewhat accounts for this impact.

Dataset Variance
Training (March 8-April 4) | 0.6360
Validation (April 5-11) 0.4683
Test (April 12-18) 0.5488

Table 3. Target variable variance for each dataset.

3.2 Results of Hyperparameter Experiments

MAE | MSE R?
Lasso 0.4861 | 0.3778 | 0.2357
Ridge 0.4836 | 0.3764 | 0.2396
XGBoostRegressor | 0.0469 | 0.1333 | 0.9262
Random Forest 0.0165 | 0.0668 | 0.9740
Gradient Boosting | 0.0868 | 0.1636 | 0.8636
Adaboost 0.2261 | 0.2981 | 0.6445
MLP 0.1480 | 0.1915 | 0.7672

Table 4. Training Metrics for each model with optimal
hyperparameters. Bolding indicates best model of each metric.

Tables 4 and 5 report the evaluation metrics on the training and
validation sets, respectively, for each model using the optimal
hyperparameters determined by gridsearch. We see that non-
linear models significantly outperform Lasso and Ridge regres-
sion, and that tree-based ensemble models perform best on the
validation set. Comparing training and validation error, we see
that Random Forest and MLP overfit the training set the most,
as the error of these models increases most during validation.
Interestingly, a few models have lower MAE and MSE on val-
idation than on training, likely due to the lower overall variance
in the validation set (0.47 for validation vs. 0.64 for training).

MAE | MSE R?
Lasso 0.3920 | 0.3766 | 0.1628
Ridge 0.3912 | 0.3755 | 0.1645
XGBoostRegressor | 0.0745 | 0.1326 | 0.8409
Random Forest 0.0779 | 0.1338 | 0.8337
Gradient Boosting | 0.0818 | 0.1627 | 0.8254
Adaboost 0.1663 | 0.2512 | 0.6449
MLP 0.1739 | 0.2446 | 0.6286

Table 5. Validation Metrics for each model with optimal
hyperparameters. Bolding indicates best model of each metric.

Notably, the xgboost model has 80% lower MAE than the
baseline on the validation set (0.0745 compared to 0.3742).

xgboost had the lowest validation MAE and was chosen as our
final model. Random Forest and Gradient Boosting had only
marginally worse results on the validation set. Table 6 reports
the xgboost evaluation metrics on the test set, after re-training
on the full training and validation sets. The results are encour-
aging: test MAE for xgboost is 36% higher than validation
MAE, but this is partially due to variance in the test set being
17% higher than in the validation set. This is apparent in the
3% decrease in R-squared value, which accounts for total vari-
ance. The test error indicates that the model generalizes quite
well to the test data and continues to dramatically outperform
the benchmarks.



MAE | MSE R?
Train 0.0469 | 0.1333 | 0.9262
Validation | 0.0745 | 0.1326 | 0.8409
Test 0.1571 | 0.1020 | 0.8142

Table 6. Evaluation metrics for xgboost.
3.3 Error Analysis

As discussed above, when we re-trained xgboost on the full
dataset (training and validation), we obtained very good results
that were similar to, although slightly worse than, the errors
on the training and validation sets. The results are tabulated in
Table 6.

We also examined the residuals on the test data as a function of
target variable, shown in Figure 2. The residuals are smallest
on average close to the average target variable, -0.5, and get lar-
ger in spread and maximum value at higher values of the target,
corresponding to outliers in the data. This is encouraging - our
model focuses on the range [-1, 1], and is not skewed too heav-
ily by outliers. The MAE of test data with target variable less
than 1 is 0.1256, 20% lower than the overall MAE of 0.1571.

We also find that the more extreme errors in the test set differ by
target variable. Instances with target variable closer to 0, if the
prediction is far from the target, are more likely to have been
overestimated, and therefore the residual is strongly negative.
Conversely, outlier data points with high target variable values
are more likely to be underestimated by our model, correspond-
ing to strongly positive residuals.
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Figure 2. Residuals on test set as a function of target variable.

4. DISCUSSION
4.1 Evaluation of Findings

The results above show that the xgboost model trained on data
from a wide range of sources clearly outperforms the linear
baseline and has notable predictive power for foot traffic. Other
ensemble models performed nearly as well, which indicates that
the approach taken here is repeatable.

4.2 Feature Importance

Like most tree-based models, xgboost provides an indication of
feature importance, defined as the average reduction in stand-
ard deviation for splits using that feature. Not surprisingly, the
most important feature is the previous week’s target variable,
“change_in_visits.” If visits are down 10% this week, it is reas-
onable to expect visits next week to be down a similar amount.
The next feature, ‘visits_2019_nextweek’ actually contributes
directly to the target variable. Historic visit counts account for

several other top features, which indicates that businesses at dif-
ferent nominal traffic levels may be impacted differently. Other
top features are government regulations (“school_closure_pct”
and “social_distancing_pct”), surrounding economics (“est” and
“emp”), and visitor demographics (“num_visitor_home_cbgs”,
“num_visitor_country_of_origin_lastweek™). The diversity of
top features reinforces the value of aggregating a wide variety
of datasets.
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Figure 3. Top 20 features by XGBRegressor importance.

4.3 Future Work

The feature importance of our final xgboost model demon-
strates the value of bringing together a diverse set of features
when predicting the impact of COVID-19. Our strategy can
be expanded to incorporate relevant data from other domains,
such as geotagged Twitter sentiment analysis, election his-
tory and polling data, and additional healthcare systems data.
SafeGraph’s own upcoming data release will provide a rich
source of new features, as well, including social distancing met-
rics and the square footage and census block group of each loca-
tion. This data release will include Weekly Patterns going back
to January 2019, which would allow us to expand our training
set back through January and February.

Additional training data will make larger lag windows viable.
Experiments could be run to find the optimal look-back win-
dow (i.e., the number of past weeks of 2020 data and past/future
weeks of 2019 data to append to every row). The inherent trade-
off between lag window and dataset size could be analyzed
with careful, lag-aware bootstrapping analysis. Lagged features
could also be added for the external datasets. Our multi-layer
perceptron did not perform as well as our tree-based ensemble
methods, but that might well change with further hyperpara-
meter tuning. Different activation functions could be tested,
along with a broad range of network parameter combinations.
We could also try to implement a non-strongly connected neural
net. A literature review would be helpful to identify potential
parameter configurations, as neural nets are notoriously difficult
to tune from scratch.

These proposed approaches could be iteratively explored using
each new Weekly Patterns data release as a test set. Because
SafeGraph’s data is aggregated and released weekly, there is
no need to adapt our method to online learning. Rather, the
data release schedule dovetails with our methodology to form a
convenient experimental protocol.



SOFTWARE

This project was conducted in Python and utilized the fol-
lowing modules: numpy, pandas, matplotlib, scikit-learn, xg-
boost. Source code is available at github.com/akrhea/covid-
foot-traffic.
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APPENDIX A: FEATURE DESCRIPTIONS

week: Week number of the year (Sunday as the first day of
the week), as int. (All days in a new year preceding the first
Sunday are considered to be in week 0.) Ranges from 11-16.
For merging only; dropped before modeling.

postal_code: 5-digit zip-code. Int. For merging only; dropped
before modeling.

naics_2: 2-digit NAICS code. String. ‘0’ indicates missing;
naics_2_0 dropped after one-hot encoding. Engineered from
SafeGraph data.

naics_3: 3-digit NAICS code. String. ‘0’ indicates missing;
naics_3_0 dropped after one-hot encoding. Engineered from
SafeGraph data.

naics_4: 4-digit NAICS code. String. ‘0’ indicates missing;
naics_4_0 dropped after one-hot encoding. Engineered from
SafeGraph data.

naics_S: 5-digit NAICS code. String. ‘0’ indicates missing;
naics_5_0 dropped after one-hot encoding. Engineered from
SafeGraph data.

naics_code: Full 6-digit NAICS code. String. ‘O’ indicates
missing; naics_code_0 dropped after one-hot encoding. From
SafeGraph data.

naics_2_num_biz: Number of established businesses matching
2-digit NAICS code in zip code, 2017. From United States
Census Bureau data.

naics_3_num_biz: Number of established businesses matching
3-digit NAICS code in zip code, 2017. From United States
Census Bureau data.

naics_4_num_biz: Number of established businesses matching
4-digit NAICS code in zip code, 2017. From United States
Census Bureau data.

naics_5_num_biz: Number of established businesses match 5-
digit NAICS code in zip code, 2017. From United States
Census Bureau data.

naics_6_num_biz: Number of established businesses matching
full 6-digit NAICS code in zip code, 2017. From United States
Census Bureau data.

visits_2019: Total number of visits to the POI over this week in
2019. Engineered from SafeGraph data.

visits_2019_lastweek: Total number of visits to the POI over
last week in 2019. Engineered from SafeGraph data.

visits_2019_nextweek: Total number of visits to the POI over
next week in 2019. Engineered from SafeGraph data.

visits_2020: Total number of visits to the POI over this week in
2020. Engineered from SafeGraph data.

visits_2020_lastweek: Total number of visits to the POI over
last week in 2020. Engineered from SafeGraph data.

change_in_visits: (visits_2020 - visits_2019) / (visits_2019+1).
Engineered from SafeGraph data.

change_in_visits_lastweek: (visits_2020_lastweek - vis-
its_2019_lastweek) / (visits_2019_lastweek+1).  Engineered
from SafeGraph data.



target: The dependent variable. Equivalent to
change_in_visits_nextweek:  (visits_2020_nextweek - vis-
its_2019_nextweek) / (visits_2019_nextweek+1). Engineered
from SafeGraph data.

distance_from_home_2019: Median distance from home trav-
elled by visitors to POI (of visitors whose home Safegraph has
identified) in meters. Original median taken over the month;
median taken again over this week in 2019. Engineered from
SafeGraph data.

distance_from_home_2019_lastweek: Median distance from
home travelled by visitors to POI (of visitors whose home
Safegraph has identified) in meters. Original median taken over
the month; median taken again over last week in 2019. Engin-
eered from SafeGraph data.

distance_from_home_2019_nextweek: Median distance from
home travelled by visitors to POI (of visitors whose home
Safegraph has identified) in meters. Original median taken over
the month; median taken again over next week in 2019. Engin-
eered from SafeGraph data.

distance_from_home_2019_missing: Binary flag indicating
distance_from_home_2019 was missing and has been replaced
by training median (weeks 11-15). Engineered from SafeGraph
data.

distance_from_home_2019_missing_lastweek: Binary flag in-
dicating distance_from_home_2019_lastweek was missing and
has been replaced by training median (weeks 11-15). Engin-
eered from SafeGraph data.

distance_from_home_2019_missing_nextweek: Binary flag in-
dicating distance_from_home_2019_nextweek was missing and
has been replaced by training median (weeks 11-15). Engin-
eered from SafeGraph data.

max_hourly _visits: The maximum number of visits to the
POI in a single hour of this week in 2020. Engineered from
SafeGraph data.

max_hourly _visits_lastweek: The maximum number of visits
to the POI in a single hour of last week in 2020. Engineered
from SafeGraph data.

median_dwell_2019: Median minimum dwell time in minutes.
Original median taken over the month; median taken again over
this week in 2019. Engineered from SafeGraph data.

median_dwell_2019_lastweek: Median minimum dwell time in
minutes. Original median taken over the month; median taken
again over last week in 2019. Engineered from SafeGraph data.

median_dwell_2019_nextweek: Median minimum dwell time
in minutes. Original median taken over the month; me-
dian taken again over next week in 2019. Engineered from
SafeGraph data.

median_dwell_2020: Median minimum dwell time in minutes,
over this week in 2020.

median_dwell_2020_lastweek: Median minimum dwell time in
minutes, over last week in 2020. Engineered from SafeGraph
data.

num_related_same_day_brand_2019: Number of other brands
that the visitors to this POI visited on the same day as the visit
to this POI where customer overlap differs by at least 5% from

the SafeGraph national average, median for this week in 2019.
Engineered from SafeGraph data.

num_related_same_day_brand 2019 _lastweek: Number of
other brands that the visitors to this POI visited on the same
day as the visit to this POI where customer overlap differs by at
least 5% from the SafeGraph national average, median for last
week in 2019. Engineered from SafeGraph data.

num _related_same_day_brand_2019_nextweek: Number of
other brands that the visitors to this POI visited on the same
day as the visit to this POI where customer overlap differs by at
least 5% from the SafeGraph national average, median for next
week in 2019. Engineered from SafeGraph data.

num _related_same_day_brand_2020: Number of other brands
that the visitors to this POI visited on the same day as the visit
to this POI where customer overlap differs by at least 5% from
the SafeGraph national average, median for this week in 2020.
Engineered from SafeGraph data.

num _related_same_day_brand_2020_lastweek: Number of
other brands that the visitors to this POI visited on the same
day as the visit to this POI where customer overlap differs by at
least 5% from the SafeGraph national average, median for last
week in 2020. Engineered from SafeGraph data.

num_visitor_country_of_origin: Number of home countries
with 5 or more visitors to the POI this week in 2020. Engin-
eered from SafeGraph data.

num_visitor_country_of_origin_lastweek: Number of home
countries with 5 or more visitors to the POI last week in 2020.
Engineered from SafeGraph data.

num_visitor_home_cbgs: Number of home census block
groups with 5 or more visitors to the POI this week in 2020.
Engineered from SafeGraph data.

num_visitor_home_cbgs_lastweek: Number of home census
block groups with 5 or more visitors to the POI last week in
2020. Engineered from SafeGraph data.

raw_visitor_counts: ~ Number of unique visitors from
SafeGraph’s panel to this POI during this week in 2020.
Engineered from SafeGraph data.

raw_visitor_counts_lastweek: Number of unique visitors from
SafeGraph’s panel to this POI during last week in 2020. Engin-
eered from SafeGraph data.

TMIN: Min temperature (F) of the week. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

TMAX: Max temperature (F) of the week. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

PRCEP: Inches of precipitation for the week. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

SNOW: Inches of snowfall for the week. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

WTO01: Number of days with fog, ice fog, or freezing fog (may
include heavy fog). Engineered from National Oceanic and At-
mospheric Administration and CivicSpace Labs data.



WT02: Number of days with heavy fog or heaving freezing fog
(not always distinguished from fog). Engineered from National
Oceanic and Atmospheric Administration and CivicSpace Labs
data.

WTO03: Number of days with thunder. Engineered from Na-
tional Oceanic and Atmospheric Administration and Civic-
Space Labs data.

WTO04: Number of days with ice pellets, sleet, snow pellets, or
small hail. Engineered from National Oceanic and Atmospheric
Administration and CivicSpace Labs data.

WT06: Number of days with glaze or rime. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

WT08: Number of days with smoke or haze. Engineered from
National Oceanic and Atmospheric Administration and Civic-
Space Labs data.

WT11: Number of days with high or damaging winds. Engin-
eered from National Oceanic and Atmospheric Administration
and CivicSpace Labs data.

cases: Number of COVID cases in the FIPS county, running
total up to that week. From New York Times data.

deaths: Number of COVID deaths in the FIPS county, running
total up to that week. From New York Times data.

POPESTIMATE2019: Estimated population in FIPS county
in 2019. From United States Census Bureau data.

Pop_pct_chg 2019:  Estimated year-over-year population
change for FIPS county, 2018 to 2019. From United States
Census Bureau data.

emp: Number of employed persons in zip code, 2017. From
United States Census Bureau data.

est: Number of established businesses in zip code, 2017. From
United States Census Bureau data.

closing_of_public_venues_pct: Portion of week in which clos-
ure of public venues was in effect for this zip code. Closure of
public venues is defined as a government order closing gather-
ing venues for in-person service, such as restaurants, bars, and
theaters. Engineered from Keystone Strategy data.

non-essential_services_closure_pct: Portion of week in which
non-essential services closure was in effect for this zip code.
Non-essential services closure is defined as a government or-
der closing non-essential services and shops. Engineered from
Keystone Strategy data.

school_closure_pct: Portion of week in which closure of
schools and universities was in effect for this zip code. En-
gineered from Keystone Strategy data.

shelter_in_place_pct: Portion of week in which a shelter in
place order was in effect for this zip code. Shelter in place is
defined as an order indicating that people should shelter in their
homes except for essential reasons. Engineered from Keystone
Strategy data.

social_distancing_pct: Portion of week in which social distan-
cing was in effect for this zip code. Social distancing is defined
as a mandate of at least 6 feet between people. Engineered from
Keystone Strategy data.

APPENDIX B: OUTLIER CAP COMPARISONS

Train R2 Train MSE Train MAE

Outlier Cap Dataset
No cap Previous targetonly 0.640898 7.724115  0.450076
SG without lag 0.644967  7.636591 0.455493
SG withlag 0.661174  3.880314  0.366743
Full dataset 0.661591 3.255859  0.351224
Cap=1 Previous targetonly 0.039996 0.257263  0.383273
SG without lag 0.220832  0.208802  0.339230
SG withlag 0.260287  0.171187  0.293761
Full dataset 0.243215 0.170585  0.291978
Cap=2 Previous target only 0.056657 0.394342  0.430185
SG without lag  0.222160  0.325158  0.387359
SG withlag 0.260144  0.262191  0.331597
Full dataset 0.236838  0.259539  0.328155
Cap=5 Previous targetonly 0.093560 0.758363  0.494951
SG without lag 0.230357  0.643913  0.458689
SG withlag 0.271977  0.496196  0.383934
Full dataset 0.241795  0.482256  0.376391
Cap=10 Previous targetonly 0.136065 1.255914  0.535752
SG without lag  0.246081  1.095983  0.508804
SG with lag 0.296034  0.807206  0.416582
Full dataset 0.264640 0.771622  0.405525
Cap=100 Previous target only 0.395070 4.694559  0.539570
SG without lag 0.421073  4.492761 0.542507
SG with lag 0.524254  2.613492 0.404590
Full dataset 0.502205 2.239160  0.392759

Figure 4. Training set metrics for different outlier caps and
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Figure 5. Validation set metrics for different outlier caps and
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