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Abstract
Optimal transport (OT) provides a geometrically meaningful framework to compare probability
distributions. However, the practical impact of OT is rather limited because of its computational
burden and statistical concerns. As a remedy, regularized OT is proposed, consisting of original OT
and a regularization term, which turns out to be helpful both in theory and practice. In this paper,
we aim to explain why regularized optimal transport helps both computationally and statistically.
We first point out that thanks to the dual formulation of regularized OT, the computation of OT is
essentially a stochastic programming, which can be efficiently solved by first-order methods, which
further paves the way of training generative models. In addition to its computational advantages,
regularized OT also breaks the curse of dimensionality when estimating the Wasserstein distance
from samples.

1. Introduction

Optimal Transport (OT) refers to the problem of optimizing cost of transportation and allocation
of resources. The problem was first formalized by the french mathematician Gaspard Monge in
1781 who was looking for the most economical way of moving soil from one place to another. The
effectiveness of the solution is determined by the minimality of the integral of the distances the
soil is moved (point-to-point). This is referred to as Monge’s variational formulation. The point-
to-point mapping is referred to as a transport plan. Intuitively, we can consider moving soil from
one place to another as comparing two piles of soils which ultimately resembles comparison of two
probability distributions. The amount of work taken for moving soil from one place to another can
be compared with the cost associated with transforming distributions into one another, measuring
the dissimilarity between distributions. Such measurement is of great significance in modern data
science and machine learning applications.

Probabilistic language provides a natural means of formalizing notions of uncertainty in high-
dimensional statistical contexts, and optimal transport as we have briefly discussed above, shows
promise for making geometry work in probabilistic regime. Therefore, it is not surprising that in
recent years, optimal transport has been applied to a wide range of problems in machine learning,
computer graphics, image processing, and document retrieval. Bonneel et al. (2011) solve a mass
transport problem by applying partial transport to perform interpolation between pairs of values in
computer graphics applications. Solomon et al. (2014) apply the theory of optimal transportation
to introduce a novel method for computing the earth mover’s distance and apply it to problems in
graphics and geometry processing. de Goes et al. (2011) propose a robust 2D shape reconstruction
algorithm which devises a fine-to-coarse scheme using optimal transport to approximate a defect-
laden point set by a simplical complex. Kusner et al. (2015) propose the Word Mover’s Distance
that measures the dissimilarity between two text documents which can be cast as an instance of the
Earth Mover’s Distance based on Optimal Transport.
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However, the direct application of traditional optimal transport suffers from a few drawbacks.
First, optimal transport is shown to be computationally expensive. Pele and Werman (2009) show
that, without the use of embeddings, the cost of computing optimal transport scales in at least
O(d3 log(d)). Dobri´c and Yukich (1995) derived a rate of convergence for transportation cost in
high dimensions and showed that vanilla optimal transport applied to sampled data is cursed by
dimensionality. Both computational and statistical concerns limits the efficacy of optimal transport
for the ever larger data of modern applications and these concerns suggest the need for regularization
in order to scale optimal transport to high-dimensional problems.

Regularized Optimal Transport Compared with vanilla optimal transport. the regularized
has appealing advantages. First, it yields a more reasonable optimal transport model for specific
problems, enforcing certain properties of the transport plan in question, such as sparsity (Blondel
et al., 2018). Second, these regularizers, often convex, serve the purpose of convex relaxation,
which makes the computation of the transport plan more tractable and more efficient. Also, adding
suitable regularizers helps overcome the curse of dimensionality coming from sampling noise and
make the Wasserstein distance estimated from high-dimensional data more statistically stable.

Regularized optimal transport has found success in many recent applications. With efficient
computation of regularized optimal transport, Gramfort et al. (2015) use entropic smoothing lead-
ing to a smooth convex optimization problem applied to functional neuroimaging data, functional
MRI and magnetoencephalography (MEG) source estimates. Abraham et al. (2015) explore Tomo-
graphic reconstruction to yield an estimate of a system from a finite number of projections. San-
jabi et al. (2018) use the regularized Wasserstein distance for computational efficiency of gradients
which allows first order optimization techniques with convergence guarantees in Generative Adverse-
rial Networks (GANs). Leveraging statistical stability brought by regularization, Genevay et al.
(2019b) rewrite the k-means algorithm as an optimal transport task for learning a low-dimensional
embedding that can better reflect the geometry of the data and derive a differentiable loss function
that can be optimized via SGD. Cuturi et al. (2019) recover differentiable operators for sorting
and ranking which can be integrated into end-to-end, automatically differentiable deep learning
pipelines.

Main focus Given both theoretical and empirical successes of regularized optimal transport from
both computational and statistical perspectives, there is a call for a better understanding of how
and when regularization helps. The main purpose of this survey paper is to answer these questions
by analyzing regularizers across two dimensions. One is about computation or optimization,
which means that we treat the optimal transport problem as an optimization, where the regularizer
mainly contributes to reducing computational complexity and imposing extra constraints on the
solution, e.g., sparsity. The second is statistical, where we are interested in how regularizers
impact statistical stability or robustness when dealing with high-dimensional data. Throughout the
survey paper, we shall mainly revolve around the family of entropy regularization, which is one of
the most popular regularizers in machine learning. Our theoretical analysis will be accompanied by
illustrative examples from the application side of optimal transport.

The rest of the paper is organized as follows. Section 2 introduces the mathematical background
of optimal transport and its regularization. Section 3 includes the computational advantages of reg-
ularized optimal transport and especially, Wasserstein generative adversarial networks is discussed
for illustrating those advantages brought by regularization. In addition to the computational aspect,
the statistical aspect of regularized optimal transport is detailed in section 4. Finally, we summarize
our findings in the conclusion.
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2. Background

In this section, we shall lay a solid mathematical foundation for our further discussion on optimal
transport and its regularization. To be specific, we will first introduce Kantorovich formulation of
optimal transport and its dual formulation. Then, we shall move to regularized optimal transport,
where the regularizers can be drawn from the family of ϕ-divergences. Among these divergences, we
are particularly interested in the one that leads to entropy regularization, which is the main focus
of our discussions on computational and statistical aspect of regularized optimal transport in the
following sections.

2.1 Optimal Transport

To illustrate optimal transport, consider α, the source measure, denoting a pile of soil and β, the
target measure, denoting a hole to be filled up. Both measures are assumed to be probability
measures over spaces X ,Y respectively. Let c : X × Y → R denote the cost function denoting the
cost of transporting unit mass of soil from x ∈ X to y ∈ Y. The optimal transport problem concerns
transporting α to β while minimizing c. More formally, if we denote M+(X ) the set of positive
Radon probability measures on X , given α ∈ M+(X ) and β ∈ M+(Y), the Monge formulation of
OT is as below,

min
T

M(T ) =

∫
X
c(x, T (x))dα(x)

subject to β = T#α

where T : X → Y is a measurable map and T#α is called the push-forward of α by T on Y, defined
as

∀B ⊆ Y, T#α(B) = α
(
T−1(B)

)
.

Monge’s problem is difficult due to the non-linear constraint and remained unsolved until
progress made more than a century later by Russian Mathematician Leonid Vitaliyevich Kan-
tarovich. Kantarovich provided a natural relaxation to the problem by allowing mass to be split
amongst multiple locations. To formalize this, consider a measure π ∈M+(X ×Y) and dπ(x, y) as
the amount of mass transferred from x to y. Kantarovich’s Optimal Transport Problem can now
be formulated as: given α ∈M+(X ) and β ∈M+(Y)

W (α, β) = min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y), (OT)

where Π(α, β) is composed of probability distributions over the product space X × Y with fixed
marginals α, β:

Π(α, β) := {π ∈M+(X × Y);P1#π = α, P2#π = β} ,

where P1#π(P2#π) s the marginal distribution of π for the first (second) variable.
eq. (OT) represents the primal form of the Kantorovich formulation of standard optimal trans-

port. The dual formulation is

W (α, β) = sup
(u,v)∈U(c)

∫
X
u(x)dα(x) +

∫
Y
v(y)β(y) (3)

where U(c) is the following set constrained by the cost function c

U(c) := {(u, v) ∈ C(X )× C(Y)|u(x) + v(y) ≤ c(x, y),∀(x, y) ∈ X × Y}, (4)
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where C(X ) denotes the set of continuous functions on X . Using the shippers problem as intuition,
u(x) can be thought of as the "loading cost" and v(y) as the "unloading cost." The constraint in
the dual formulation of standard OT makes it difficult to compute.

2.2 Regularized Optimal Transport

We now introduce regularized optimal transport, which regularizes the original problem by pe-
nalizing it with the ϕ− divergence. We first briefly review the ϕ− divergence and then move to
regularized optimal transport.

ϕ-divergences ϕ-divergences make up a family of functions that measure the difference be-
tween probability distributions. For two distributions denoted α ∈ M+(X ) and β ∈ M+(Y),
ϕ-divergences compare dα

dβ to 1. ϕ-divergence is 0 when dα
dβ = 1 and grows larger as dα

dβ diverges from
1, which occurs when α and β differ greatly. Formally, ϕ-divergence is defined as:

Dϕ(α|β) :=

∫
X
ϕ(
dα

dβ
(x))dβ(x),

where ϕ(x) is a convex, lower semi-continuous function, and ϕ(1) = 0. The choice of the ϕ(x) de-
termines the specific divergence, as shown in table 1 for a few common divergences. ϕ-divergences
have many applications, and in OT they can be used as regularization terms.

Divergence ϕ(x)

Kullback-Leibler(KL) x log(x)
Total Variation 1

2 |x− 1|
Jensen-Shannon(JS) (x+ 1) log( 2

x+1) + x log(x)

Table 1: Example ϕ-divergences and their corresponding ϕ functions.

Regularized Optimal Transport As originally proposed in Cuturi (2013), regularized optimal
transport consists of penalizing standard optimal transport with the ϕ-divergence of the transport
plan (π(x, y)) with respect to the product measure (α⊗ β). The primal formulation is:

Wϕ
ε (α, β) := min

π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + εDϕ(π(x, y)|α(x)⊗ β(y))

= min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

ϕ(
dπ(x, y)

dα(x)dβ(y)
)dα(x)dβ(y)

(5)

As the transport plan deviates more from the product measure, the regularization term increases.
Hence, transport plans that are more similar to the product measure are preferred.

It is also noted that strong duality holds for regularized OT, as proven in Genevay (2019), with
the dual formulation:

Wϕ
ε (α, β) = sup

u,v∈C(X )×C(Y)

∫
X
u(x)dα(x)+

∫
Y
v(y)dβ(y)−ε

∫
X×Y

ϕ∗(
u(x) + v(y)− c(x, y)

ε
)dα(x)dβ(y)

(6)
where ϕ∗ is the Legendre transform of ϕ:

ϕ∗(p) := sup
w
wp− ϕ(w) (7)
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Notably, the constraints of the dual formulation of standard OT in eq. (4) have been replaced with
a smooth regularization term (the last term in eq. (6). The existence of maximizers of eq. (6) is not
guaranteed in general, but is guaranteed for particular choices of ϕ(x) such as ϕ(x) = x log(x)−x+1,
which is the choice of interest here. Regularizing OT with this φ(x) results in entropy-regularized
OT, the primal form of which can be defined as:

Wε(α, β) := min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + εDKL(π|α⊗ β) (ROT)

where DKL is the relative entropy (or KL divergence) of the transport plan π(x, y) with respect to
the product measure α⊗ β:

DKL(π|α⊗ β) :=

∫
X×Y

(log(
dπ(x, y)

dα(x)dβ(y)
)− 1)dπ(x, y) + 1

The dual formulation is, as expected, eq. (6) with the specified ϕ:

Wε(α, β) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε

(Dual ROT)

eq. (Dual ROT)1 is a result of simplifying the Legendre transform for ϕ(x) = x log(x)− x+ 1:

ϕ∗(p) := sup
w
wp− w log(w) + w − 1 = ep + 1

The dual formulation of entropy regularized OT is concave in both u and v. Genevay (2019)
introduces and derives a semi-dual formulation of entropy regularized OT, which is of the form:

Wε = max
v∈C(Y)

∫
X
vc,ε(x)dα(x) +

∫
Y
v(y)dβ(y), (Semi-Dual ROT)

where vc,ε is the c, ε-transform, defined as:

vc,ε := −ε log(

∫
Y
e
v(y)−c(x,y)

ε dβ(y)).

3. Computational Optimal Transport with Regularization

As we have mentioned in the introduction, the computation of OT for discrete distributions involves
large-scale linear programming, which can become prohibitive computationally in some cases and
hence limits the practical impact of OT. What’s more, linear programming based methods can not
be applied when dealing with continuous densities. Even though there are known methods called
semi-discrete solvers (Aurenhammer et al., 1998) for computing the distance between a discrete
distribution and a continuous one, they are restricted to the Euclidean squared cost, and can only
be implemented in low dimensions. As the solvers were originally designed for assignment problems,
they can hardly applied in high-dimensional statistical contexts. Therefore, it is of great significance
to develop computational methods that can cope with three possible settings:

1. discrete OT: compare a discrete with another discrete measure;

1. In our following discussion, we often omit the constant ε in the dual formulation for simplicity.
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2. semi-discrete OT: compare a discrete with a continuous measure;

3. continuous OT: compare a continuous with another continuous measure.

In this section, we shall present how to kill the above three “birds” with one “stone”: entropy
regularization. This regularization approach relies on two main ideas: 1) when using the dual for-
mulation, the OT problem can be viewed as a stochastic optimization; 2) for such an optimization
problem, entropy regularization results in a smooth concave objective function. Therefore, compu-
tational methods in stochastic optimization (such as stochastic gradient descent) can carried over
to OT problems, as we shall see more clearly in the following.

3.1 Stochastic Optimization Formulation

Recall that the dual formulation of the entropy regularized OT in eq. (Dual ROT) is

Wε(α, β) = max
u∈C(X ),v∈C(Y)

Fε(u, v),

where

Fε(u, v) =

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)− ε

∫
X×Y

exp

(
u(x) + v(y)− c(x, y)

ε

)
dα(x)dβ(y).

If we define

fε(x, y, u, v) := u(x) + v(y)− ε exp

(
u(x) + v(y)− c(x, y)

ε

)
,

then we can rewrite Fε(u, v) as an expectation, i.e.,

Fε(u, v) = EX∼α,Y∼β[fε(X,Y, u, v)].

Hence, the dual problem can be rewritten as a stochastic optimization.

max
u∈C(X ),v∈C(Y)

EX∼α,Y∼β[fε(X,Y, u, v)]. (8)

It is noted that the dual cannot be cast as an unconstrained expectation maximization problem
when ε = 0, which indicates the significance of adding such regularization: by introducing entropy
regularization, we replace the hard constraint by the soft constraint.

For the semi-dual formulation in eq. (Semi-Dual ROT), we can derive corresponding stochastic
optimization problem. From equation, we know that

Wε(α, β) = max
v∈C(Y)

Hε(v),

where

Hε(v) =

∫
X
vc,ε(x)dα(x) +

∫
Y
v(y)dβ(y)

vc,ε(x) = −ε log

(∫
Y

exp

(
v(y)− c(x, y)

ε

)
dβ(y)

)
.

Let hε(x, v) =
∫
Y v(y)dβ(y) + vc,ε(x), then the semi-dual problem is equivalent to the following

optimziation

max
v∈C(Y)

EX [hε(X, v)] (9)
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We note that though eq. (8) is written in the form of stochastic programming, it becomes
a finite-dimensional convex programming problem, i.e., the objective function becomes concave,
when the distribution is a finite sum of dirac measures. In this case, we can have a much simpler
computational scheme, such as Sinkhorn algorithm (Cuturi, 2013) as we show below. On the other
hand, when the distribution is continuous, though direct computation is impossible, we can leverage
sampling and/or kernel methods as a workaround.

3.2 Discrete and Semi-discrete Optimal Transport

For discrete OT, both α and β are discrete measures, i.e., α =
∑I

i=1 αiδxi and β =
∑J

j=1 βjδyj , where
{xi}Ii=1 ⊂ X and {yj}Jj=1 ⊂ Y. Equivalently, we can view each discrete measure as a vector from
some simplex, that is α ∈ ΣI and β ∈ ΣJ , where ΣI ,ΣJ are simplexes in RI and RJ respectively.
These discrete measures may come from the evaluation of continuous densities on a grid, which
serves as a discretization (Liu et al., 2018; Bosc, 2010; Mérigot, 2011) or empirical measure based
on samples for some machine learning applications.

Apparently, as α ∈ ΣI , β ∈ ΣJ are both of finite dimension, the optimization problem eq. (8)
also becomes a finite dimensional optimization problem as

max
u∈RI ,v∈RJ

g(u, v) := 〈u, α〉+ 〈v, β〉+ ε
∑
i,j

exp

(
ui + vj − ci,j

ε

)
αiβj . (10)

We note that the function g(u, v) is concave and continuously differentiable, hence it admits a
maximizer, which be can obtained by performing alternating maximization.

uk+1 = arg max
u

g(u, vk),

vk+1 = arg max
v

g(uk+1, v)
(11)

If we let aki = eu
k
i /ε, bki = ev

k
i /ε and denote e−c/ε the matrix whose entry is (e−c/ε)ij = e−cij/ε, then

the alternating maximization eq. (11) becomes

ak+1 = 1� e−c/ε(bk ⊗ β),

bk+1 = 1� e−c/ε(ak+1 ⊗ α),
(SK)

where� is the pointwise division and⊗ is the pointwise multiplication. We note that this alternating
maximization scheme eq. (SK) is often referred to as Sinkhorn Algorithm, which is the state of the
art for computing discrete optimal transport (Cuturi, 2013) The algorithm introduced above relies
on the the dual formulation, which involves matrix-vector multiplication at each iteration with
complexity O(N), N = max(I, J). On the other hand, this computational issue can be alleviated
by applying online stochastic optimization methods to the stochastic optimization problem derived
from the semi-dual formulation, as pointed out in (Genevay et al., 2016).

Recall that for the semi-dual formulation, the equivalent optimization problem is given by eq. (9),
where the objective function under discrete measures α, β becomes

EX [hε(X, v)] =
∑
i∈I

hε(xi, v)αi, (12)

where

hε(x, v) =
∑
j∈J

vjβj − ε log

∑
j∈J

exp

(
vj − c(x, yj)

ε

)− ε.
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For such a stochastic optimization problem, when we apply stochastic gradient descent (SGD), we
first initialize v = 0J and at k−th iteration, we draw a sample xk from the distribution α, then we
compute the following gradient as a proxy for the full gradient

∇vhε(xk, v) = β − χε(c(x,y`)−v`)`

where (χεr)j = e−
rj
ε βj

(∑
` e
− r`
ε β`

)−1
. Hence, SGD gives the following updating rule

vk+1 = vk + ηk∇vhε(xk, vk), (SGD)

where ηk is the step size, decaying fast enough to zero in order to ensure that the “noise” created
by using the proxy ∇vhε(xk, v) is canceled in the limit. One of such step sizes can be ηk = η0

1+k/k0
,

where k0 is roughly the number of iterations serving as a warmup phase. One can prove by using
stochastic approximation (Peyré and Cuturi, 2019) that |Hε(v

∗)−Hε(vk)| = O(1/
√
k).

Since SGD is slow because of the fast decay of ηk toward zero, Schmidt et al. (2017) propose to
apply stochastic average gradient descent (SAG), in order to improve the convergence speed. The
key is to find a better proxy for the full gradient. Different from SGD, SAG keeps in memory the
gradients it has computed in the past and updates the stored gradient every time the particular
sample, based on which the gradient was computed previously, is sampled again. The key of SAG is
that it applies an update in the direction of the average of all gradients stored so far, which improves
the convergence rate to |Hε(v

∗)−Hε(vk)| = O(1/k). The updating rule of SAG is

vk+1 = vk +
ηk
I

I∑
i=1

gi, (SAG)

where gi = ∇vhε(xi, vki) if xi has been sampled most recently at ki−th iteration, otherwise gi = 0.
Obviously, compared with eq. (SGD) dealing with only one gradient at a time, eq. (SAG) has to
store the gradients for each of the I points. This expense can be mitigated by adopting mini-batches
instead of individual points.

In addition to SGD and SAG, another popular first-order method that can be applied to speedup
the convergence is stochastic gradient descent with averaging (SGA)(Bach, 2014). Similar to SAG,
this method improves the convergence speed by averaging the past iterates, yet it only takes one
gradient per iteration. To be specific, SGA first runs a standard SGD on auxiliary variable ṽ

ṽk+1 = ṽk + ηk∇vhε(xk, ṽk),

where xk is drawn from α and then outputs the averaged vector vk+1 = 1
k

∑k
i=1 ṽk. To avoid

explicitly storing all the iterates, we can adopt a running average as follows

ṽk+1 = ṽk + ηk∇vhε(xk, ṽk),

vk+1 =
1

k + 1
ṽk+1 +

k

k + 1
vk.

(SGA)

In this case, a typical choice of the step size is of the form ηk = η0

1+
√
k/k0

, where k0 is defined in

the same way as in SGD. We note that this decays to 0 in a much slower pace than that in SGD.
The convergence rate is O(1/

√
k) and though it is of the same order as SGD, Bach (2014) proves

that the constants involved in the big O are smaller than SGD, since in contrast to SGD, SGA is
adaptive to the local strong convexity of the functional.
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Our discussions above revolve around discrete OT, and in fact, we see no difficulty in carrying
these deductions over to semi-discrete problems, as the two enjoy the same stochastic optimization
formulation, as we shall see more clearly in the following.

We assume that α is now an arbitrary measure that may not be discrete and β =
∑J

j=1 βjδyj .
Naturally, one can consider approximating α by an empirical measure α̂N := 1

N

∑N
i=1 δxi , where

{xi} are iid samples from α. However, this introduces bias as the discretized problem is different
from the original one. In fact, In this case, we can resort to the semi-dual problem, which is still a
finite-dimensional maximization problem, written as

Wε(α, β) = max
v∈RJ

EX∼α[hε(X, v)].

Though we can no longer write the expectation as a finite sum as we do in eq. (12), we assume
we can draw samples from α, which is a common setting in machine learning applications. By this
assumption, we see that our previous algorithms such as SGD and SAG also apply here, as all of
them only rely on sampling when performing the update.

3.3 Continuous Optimal Transport

We note that so far the optimal transport problems we have discussed can all be converted to
finite-dimensional stochastic optimization as at least one of the measures is discrete. Apparently,
when neither α or β is discrete, the problem eq. (9) is infinite-dimensional, which cannot be solved
by simply gradient methods. Intuitively, we can find some finite-dimensional approximations which
can be either parametric or non-parametric, as we shall see in the following.

We start with the non-parametric approach proposed in (Dieuleveut and Bach, 2016). The key
is that we approximate the continuous functions u ∈ C(X ), v ∈ C in the dual formulation by linear
combination of kernel functions in reproducing kernel hilbert spaces (RKHS) and then searching
potentials u, v is equivalent to searching the linear combination coefficients, which becomes a finite-
dimensional problem. Specifically, we consider two RKHS H and G defined on X and Y with kernels
κ and `. Recall that if u ∈ H then u(x) = 〈u, κ(·, x)〉H, then we rewrite fε(x, y, u, v) as

fε(x, y, u, v) = 〈u, κ(x, ·)〉H + 〈v, `(y, ·)〉G − ε exp

(
〈u, κ(x, ·)〉H + 〈v, `(y, ·)〉G − c(x, y)

ε

)
By the reproducing property of H and G, we can compute derivatives of fε as

∂ufε(x, y, u, v) = κ(·, x)

(
1− exp

(
u(x) + v(y)− c(x, y)

ε

))
∂ufε(x, y, u, v) = `(·, y)

(
1− exp

(
u(x) + v(y)− c(x, y)

ε

))
.

(13)

Hence, if we consider the stochastic gradient descent

(uk, vk) = (uk−1, vk−1) +
C√
k
∇fε(xk, yk, uk−1, vk−1),

where xk, yk are iid samples from α ⊗ β, we obtian the following recursion formula for iterates
(uk, vk) as we substitute the gradient ∇fε with eq. (13)

(uk, vk) =

k∑
i=1

αi(κ(·, xi), `(·, yi)),

αi = PBr

(
C√
i

(
1− exp

(
ui−1(xi)− vi−1(yi)− c(xi, yi)

ε

)))
,
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where PBr is the projection on the centered ball of radius r. Such projection places a bound on the
iterates and ensures convergence as shown in (Dieuleveut and Bach, 2016).

We note that though using kernel methods reduces infinite-dimensional problem to finite-dimensional
one, there is no free lunch: the main computation cost arises from uk−1 (xk) =

∑k−1
i=1 αiκ (xk, xi)

and vk−1 (yk) =
∑k−1

i=1 αi` (yk, yi), which leads to complexity O(k2). In words, as the recursive pro-
cedure proceeds, the running time complexity for non-parametric approach is growing quadratically
with respect to the the number of iterations.

In order to alleviate this issue, Seguy et al. (2017) restrict that infinite-dimensional optimization
problem over a space of continuous functions to a much smaller subset, such as that spanned by
deep neural networks. Simply put, we approximate u, v by uφ and vψ respectively, where uφ, vψ
are parametrized by two independent neural networks with φ, ψ being the parameters. At each
iteration, we first draw a batch of samples from α, i.e., (x1, . . . , xp) ∼ α and another batch from β,
i.e., (y1, . . . , yp) ∼ β, then we update the parameters as follows

φ← φ+ γ
∑

ij ∇φu (xi) + ∂ufε (xi, yj , uφ, vψ)∇φu (xi)

ψ ← ψ + γ
∑

ij ∇ψv (yj) + ∂vfε (xi, yj , uφ, vψ)∇ψv (yj) .

Compared with the non-parametric one where the complexity is O(k2) for k−th iteration, this
parametric one only requires O(p2) per iteration. Hence, this approach can provide an effective way
to compute a proxy for the Wasserstein distance in high-dimensional scenarios, though this approach
leads to a nonconvex finite-dimensional optimization problem without theoretical guarantees.

So far we have discussed efficient computational schemes for solving computational optimal
transport problems. Furthermore, efficient computation brings optimal transport to a wider audi-
ence in machine learning research, where regularized OT improves the performance of some machine
learning models, such as generative adversarial networks (GAN), as we shall present in the subse-
quent.

3.4 Regularized Optimal Transport in GAN

Generative Adversarial Networks (GANs) have emerged as one of the most practical methods for
learning data distributions. GANs train a generative model to capture the data distribution, and a
discriminative model that tries to distinguish between the samples from training data and the ones
generated by the generative model. Wasserstein GANs are a GAN formulation based on the Earth
Mover’s Distance, a special case of the Wasserstein distance. More formally, assume that we have
two distributions α and β defined over X and Y respectively2, where the two are subsets of Rd. Let
Π be the family of couplings of α and β. Recall that given a cost function c : Rd × Rd → R, the
optimal transport cost between α and β is W (α, β) as defined in eq. (OT)

The goal of generative modeling is to learn a mapping Gθ∗ ∈ {Gθ, θ ∈ Θ} such that the cost
W (Gθ∗(α), β) is minimized. In other words, we seek an optimal θ that minimizes the transportation
cost.

min
θ∈Θ

h0(θ) = W (Gθ(α), β) = min
π∈Π(α,β)

∫
X

∫
Y
π(x, y)c (Gθ(x), y) dxdy (WGAN)

2. In machine learning practice, we often assume X and Y have finite supports, as we often deal with finite data
points such as images.
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The primal problem is computationally challenging. Instead, the dual formulation of the generative
problem is easier to parameterize. This dual formulation is called the Wasserstein GAN. Let u and
v be the dual functions parameterized by φ and ψ respectively.

min
θ

max
φ,ψ

Ex∼αuφ (Gθ(x))− Ey∼βvψ(y)

subject to uφ (Gθ(x))− vψ(y) ≤ c (Gθ(x), y) , ∀(x, y)
(14)

Wasserstein GANs are popular due to training stability over the standard GANs. In fact, when we
use the euclidean norm as the cost function, we can have a much simpler dual formulation, known
as Kantorovich-Rubinstein formulation (Villani, 2009), which we shall detail when we argue why
regularization improves Wasserstein GAN. For now, we first introduce what regularzied Wasserstein
GAN is and how it works.

Apparently, minimizing the Wasserstein distance is computationally challenging due to the non-
convex and non-smooth nature of the objective. Regularized optimal transport applied to Wasser-
stein GANs has been shown to be computationally efficient by application of first order optimiza-
tion methods for optimizing the objective. Simply put, we replace W (Gθ(α), β) with the entropy
regularized version Wε(Gθ(α), β) defined in eq. (ROT). When adopting the dual formulation in
eq. (Semi-Dual ROT), we obtain a similar problem as we do in eq. (14) but without any constraints

min
θ∈Θ

hε(θ), (15)

where hε(θ) is defined as

hε(θ) = max
u∈C(X ),v∈C(Y)

Ex∼α[u(Gθ(x))]− Ey∼β[v(y)]− Ex,y∼α×β
[
exp

(
u(x) + v(y)− c(x, y)

ε

)]
(16)

As introduced, GANs train two models, a generator to capture the data distribution, i.e., Gθ
and the associated training problem eq. (15) and a discriminator to distinguish between samples
and generator output, i.e., eq. (16). The dual formulation of the regularized optimal transport for
GANs models the discriminators as dual functions. Therefore, solving the dual formulation yields
the discriminator parameters. The dual is an unconstrained concave maximization problem and
can be solved so, however parametric methods such as neural networks are also applicable. For
the generator problem, consider hε(θ) to be the generative model objective. It has been shown in
(Sanjabi et al., 2018) that hε is L-Lipschitz smooth, for some L ∈ R. The smoothness ensures that
small changes in ε result in small changes in the optimal transport plan. More importantly, dual
solver can generate approximate gradients for hε. The approximated gradients ∇θhε(θ) can be used
to produce algorithms with guaranteed convergence to approximate solutions to the GAN generator
and can be solved by first order methods such as Stochastic Gradient Descent (SGD).

In practice, larger values of ε introduce bias into the Wasserstein distance. However, Sanjabi
et al. (2018) point out that the solution isn’t as trivial as reducing ε since it changes the optimal
discriminator parameters, changes the convergence guarantees and reduces the Lipschitz smoothness
of hε. Another proposed solution is to use the Sinkhorn loss defined in eq. (17) to get an objective
that is meaningful for larger values of ε.

Dε
SK(α, β) := 2Wε(α, β)−Wε(α, α)−Wε(β, β). (17)

As highlighted in (Sanjabi et al., 2018), in addition to the computational benefits, by incor-
porating the regularization, the algorithm only requires solving the discriminator to approximate
optimality with theoretical guarantees. For the rest of the section, we try to answer the following
question
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How does regularization improve training Wasserstein GAN theoretically?

Our arguments mainly revolve around the following key facts:

1. The entropy regularization renders Wε(α, β) Fréchet-differentiable with respect to α, β, which
makes the generative objective smooth

2. The entropy regularization, by placing soft constraints, makes the dual problem an uncon-
strained maximization, where the dual solutions are within the class of continuous functions.
This make the discriminator problem “solvable” when using neural networks.

To further develop our points, we briefly review the vanilla Wassertein GAN and discuss issues in
the training process, with which we compare the regularized version and explain its advantages.

In generative models, one key step is to find a discrepancy function measuring dissimilarity
between the data distribution and the learned distribution. As argued in (Arjovsky et al., 2017),
different from KL or JS divergence, wassersetin distance yields a weaker topology on the space
of probability measures. Hence, if we use wasserstein distance as the discrepancy function, i.e.,
the loss function, it is continuous with respect to the learning parameters, which improves the
stability of learning, avoids mode collapse and provides helpful learning curves for debugging and
hyperparameter searches. Moreover, it is differentiable almost everywhere given the mapping Gθ
is locally Lipschitz, providing useful gradient for learning the model. However, we argue that this
vanilla Wasserstein GAN is not learnable or solvable when adopting neural networks as the function
approximator, as shown below.

Following our previous notations, and let c(x, y) = ‖x − y‖ on Rd, then by Kantorovich-
Rubinstein duality (Villani, 2009),

W (β,Gθ(α)) = sup
‖f‖L≤1

Ex∼β[f(x)]− Ex∼Gθ(α)[f(x)], (18)

where {f |‖f‖L ≤ 1} denotes all 1-Lipschits functions. In (Arjovsky et al., 2017), it has been shown
that

∇θW (β,Gθ(α)) = −Ez∼α[∇θf(Gθ(z))], (19)

where f is the solution to eq. (18) and we note such a gradient can be estimated via sampling methods
(Gulrajani et al., 2017), as it is written as an expectation. Though such process is principled as
argued in (Arjovsky et al., 2017), approximating the solution f using neural networks turns out to
be messy. Arjovsky et al. (2017) proposed the following substitute for seeking the solution, which
relies on a family of functions {fw}w∈W parameterized by neural networks.

max
w∈W

Ex∼β[fw(x)]− Ez∈α[fw(Gθ(z))], (20)

whereW denotes a compact set, ensuring that fw is of Lipschitz. In practice, in order to parameters
lie in a compact set, weights clipping (Arjovsky et al., 2017) and other remedies, such as gradient
penalty (Gulrajani et al., 2017) have been proposed, which alleviate the stability issue in GAN
training to some extent.

However, such techniques are rather engineering practices than a mathematical workaround. In
fact, when we solve for eq. (20), we are essentially solving a problem different from eq. (18), as
{fw}w∈W is merely a subset of Lipschitz functions. What’s worse, as pointed out in (Bousquet
et al., 2017), no matter how accurately we solve for eq. (20), it may fail to provide a good estimate
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of the gradient, when we plug it in eq. (19). We denote the solution to eq. (18) by f∗ and the
ε−optimal one by f ε, i.e.,

|Wf∗(α, β)−Wfε(α, β)| < ε,

Wf (α, β) := Ex∼β[f(x)]− Ex∼Gθ(α)[f(x)]

It has been shown in (Bousquet et al., 2017) that there exists a constant C > 0 such that for any
ε > 0, one can always find α, β such that cos(∇θWf∗ ,∇θWfε) ≤ 1 − C. Therefore, we claim that
for Wasserstein GAN, the discriminator problem, i.e., finding the dual solution is not “solvable” for
neural networks.

From our discussions above, we can see that though Wasserstein GAN enjoys many theoretical
advantages over other divergences, its training process is quite challenging. Thanks to regulariza-
tion, we can turn to regularized wasserstein distance for a better training process with theoretical
guarantees. First of all, by adding entropy regularization, the dual problem is an unconstrained
convex programming, though infinite dimensional. Moreover, the dual solutions (u, v) vary contin-
uously with the input measures (α, β), which further implies the differentiability of Wε with respect
to α, β. The technical details underneath are beyond the scope of this paper, and we refer reader to
(Feydy et al., 2018). Hence, for the training process, we obtain a smooth loss functionWε(β,Gθ(α))
to which we can apply some stochastic programming solvers, e.g. stochastic gradient descent.

Besides, we note that when using the dual formulation eq. (Dual ROT), the solutions are within
the class of continuous functions, which can be approximated by neural networks, according to the
universal approximation theorem . In other words, instead of solving for a substitute eq. (20) in
vanilla Wasserstein GAN, we are indeed solving for the true discriminator problem, which is solvable
for neural networks at lease theoretically. Even though there is bound to exists some approximation
error, it has been shown that such approximations still provides helpful information for estimating
the gradient when solving the generator problem (Sanjabi et al., 2018), as we have seen above.

4. Statistical

Besides the computational benefits of ROT, the statistical behaviours of the ROT are also worth
mentioning. A good statistical understanding of this problem is critical because we often use an
approximated version of the Wasserstein distance in machine learning. In section 4.1, we would
compare the rate of convergence on a continuous set for OT and ROT. A discussion of the different
limiting behaviours of the OT and ROT for distributions supported on finite spaces will be shown
in section 4.2.

In many real applications as we have mentioned in the introduction, the distribution of α (β or
both) is estimated from data by its empirical distribution. Suppose we have a sample of iid. random
variables X1, · · · , Xn ∼ α (or/also Y1, · · · , Ym ∼ β). We estimate α (β or both) by its empirical
version

α̂n =
1

n

n∑
i=1

δXi , β̂m =
1

m

m∑
i=1

δYi

Recall the definition of p-Wasserstein distance. Let (X , d) be a complete metric space with d :
X × X → R+. Let Pp(X ) be the set of Borel probability measures supported on X with finite
moment of order p ≥ 1. The p-Wasserstein distance between two measures α and β in Pp(X ) is
defined by

Wp(α, β) = ( inf
π∈Π(α,β)

∫
X 2

dp(x, y)dπ(x, y))1/p
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We can also define Wp,ε as the p-Wasserstein distance for the ROT with a regularization term
according to eq. (ROT).

4.1 Rate of Convergence

We surveyed some results on the rate of convergence on compact set X ∈ Rn and compare the rate
for OT and ROT. For more general metric spaces and refinements to the rates, see (Dudley, 1969),
(Alfonsi, 2013) and (Fournier and Guillin, 2015).

Theorem 1 [Dudley (1969)] For X ∈ Rd and measure supported on bounded domain. For d ≥
3, 1 ≤ q <∞

E(|Wp(α̂n, β̂m)−Wp(αn, βm)|) = O(n−1/d)

From the above theorem, we see the quality of the approximation scales like O(n−1/d). In order to
achieve the same estimation quality, we’d need to have the sample size scale exponentially. This
would be a nightmare when using OT in the context of high dimensional data, and it is often referred
to as the curse of dimensionality. We have seen in Section 3 how entropy regularization helps with
efficient computation, the following theorem proved in a recent paper by Genevay et al. (2019a)
gives insights on how it also helps break the curse.

Theorem 2 [Genevay et al. (2019a)]
Consider the the Sinkhorn divergence between two measures α ∈ X , β ∈ Y, where X ,Y ∈ Rd are

bounded. Also, require the cost c be L-Lipschitz and C∞.

E(|Wε(α̂n, β̂m)−Wε(αn, βm)|) = O(
e
κ
β

√
n

(1 +
1

εbd/2c
)),

where κ = 2L|X |+ ‖c‖∞

In particular, this theorem gives the following asymptotic behavior.

E(|Wε(α̂n, β̂m)−Wε(αn, βm)|) −→ O(
e
κ
β

√
n

1

εbd/2c
) as ε→ 0 (21)

E(|Wε(α̂n, β̂m)−Wε(αn, βm)|) −→ O(
1√
n

) as ε→∞ (22)

From the previous asymptotic behavior, we observe the following. First, as ε→∞, the convergence
rate in eq. (22) does not depend on d or ε anymore . Therefore, when ε is large, increasing ε will
not significantly improve convergence rate. Secondly, when ε is small, we see that the dependence
on ε is crucial. Furthermore, we observe the influence of ε on the convergence rate increases with
the dimension d as shown in eq. (21), but much more mildly compared with O(n−1/d) in theorem 1.

4.2 Limiting behaviours on Finite Sets

Understanding the limiting behaviours of the empirical Wasserstein distance is also critical, espe-
cially to statistical inference (e.g. confidence intervals for sample based Wasserstein distances).
However, its applications in a statistically rigorous way is severely hindered by a lack of inferential
tools. A central limit theorem was established in (Barrio and Loubes, 2019) for empirical trans-
portation cost where data are sampled from absolutely continuous measures on Rd. However, these
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results in the continuous setting lead to test statistics whose numerical implementation become
prohibitive for d ≥ 2. Sommerfeld and Munk (2018) argue that this issue can be solved by restrict-
ing the distributions on finite sets and they give a distributional limit of the empirical Wasserstein
distance. The restriction is not only an approximation to the truth, but rather a sufficient setting
for many real world applications. Following their work, a central limit theorem for the entropic
regularized optimal transport was given by Bigot et al. (2019) in parallel to Klatt et al. (2019). In
this subsection, we briefly compare the main limiting behaviors for the OT and ROT on finite sets.

Theorem 3 [Sommerfeld and Munk (2018)]
Under the null hypothesis r = s, the empirical OT distance has the following limiting behaviour

(
nm

m+ n
)

1
2pWp(α̂n, β̂m)

D−→ {max
u∈Φ∗
〈G, u〉}1/p, as n,m→∞,

where Φ∗ is the set of dual solutions to the OT. G is a centered N-d Gaussian distribution whose
covariance matrix depends on r.

We see that the this theorem applies to all probability measures with finite support, regardless of
the dimension of the underlying space. Furthermore, the scaling rate depends solely on p, which
contrasts the bounds for a continuous case where a strong dependence on the dimensionality was
exhibited.

The central limit theorem for empirical regularized optimal transport on finite spaces was given
by Klatt et al. (2019) in parallel with Bigot et al. (2019). Since the work by Klatt et al. (2019) applies
to regularizer of Legendre type (sufficiently smooth), which includes the entropy regularization, we
includes the main results of the paper here.

Theorem 4 [Klatt et al. (2019)]
Let α, β ∈ ΣN on the finite metric space (X , d) and if we denote D−→ the convergence in distri-

bution, then we have

1. One Sample: α is estimated by its empirical version

√
n{Wp,ε(α̂n, β)−Wp,ε(α, β)} D−→ N1(0, σ2

p,ε(α|β)), as n→∞

2. Two Samples: α, β both estimated by their empirical version√
nm

n+m
{Wp,ε(α̂n, β̂m)−Wp,ε(α, β)} D−→ N1(0, σ2

p,ε(α, β)), as m,n→∞

This theorem is valid for a general class of regularizers, for a detailed definition see (Klatt et al.,
2019). In particular, it is valid for Boltzmann-Shannon entropy, Burg entropy and Fermi-Dirac
entropy.

We observe the following difference and relationships to the non-regularized case. First, the
theorem does not differentiate between the case for the hypothesis α = β and α 6= β, which is
different from the OT case. Secondly, the limiting behaviour of the ROT (ε = 0) is asymptotic to
a Gaussian distribution, which is different from the behaviour of the non-regularized OT case (see
theorem 3). Furthermore, if we apply this theorem to the negative Boltzmann-Shannon entropy,
we obtain the empirical Sinkhorn divergence, where empirical measures are the inputs for eq. (17).
Since we know that the Sinkhorn divergence approximates the OT distance exponentially fast as
ε→ 0. This different limit behaviour shed light onto approximating the non-regularized OT distance
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by the Sinkhorn divergence as ε → 0. In particular, when we let ε tends to 0 at an appropriate
rate depending on the sample size, ε = o(1/ log(

√
n)), we recover the distributional limit given by

theorem 3 in the setting of vanilla optimal transport. Finally, a real world application of the benefit
of using ROT dependent test statistics was shown in (Klatt et al., 2019) for the study of protein
interaction networks, which are intended to allow more statistical inference from the outcome of the
optimal transport plan.

5. Conclusion

We have discussed in this paper that regularization is indeed a game changer for optimal transport
and related applications, from both computational and statistical perspectives. In particular, we
focus on entropy regularized optimal transport and its numerous advantages over vanilla optimal
transport, as it has been widely applied in modern machine learning practice, such as generative
models. Thanks to the smoothing effect of the regularization, we obtain an unconstrained maximiza-
tion problem as the dual formulation, where the objective is concave. Such formulation provides a
stochastic programming viewpoint for computational optimal transport and improves the training
process in Wasserstein GAN, as it renders the training loss smooth with respect to the generator
and makes the discriminator solvable for neural networks. On the other hand, from the statisti-
cal perspective, existing results for the vanilla OT supported on Rd lead to test statistics whose
numerical implementation become prohibitive for high dimensional empirical measures. With the
help of entropic regularized OT, it is of great help to propose test statistics based on fast Sinkhorn
divergences for statistical inference, e.g. confidence intervals for sample based Wasserstein distance.
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