Structured modeling of
LIDAR point clouds

Michael Stanley
NYU Center for Data Science

November 11, 2020



Aerial LIDAR Scanning B NYU s

LiDAR
* Use of laser pulses to measure distances

* LiDAR scanner emits laser pulses, measures the time required for the pulse
to hit an object, return to scanner

* Point location is calculated based on return time and scanner orientation,
then georeferenced based on location of scanner

Aerial LIDAR
* LiDAR scanner attached to an aircraft

* Invented in the 1960s, aerial LIDAR was used primarily in
elevation/topological mapping, used more frequently in urban
environments in recent years
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Fig: Resulting point cloud from 2019 scan of Sunset Park, Brook
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Point Clouds
* Aerial LiDAR scanning creates a point cloud

* Each point has three spatial coordinates, other features
(intensity, return number, etc.)

1https.//www.auav.com.au/articles/drone-data-vs-lidar/




Point Cloud Processing ¢ [NQUREE

* Applying machine learning to point clouds
is problematic for a few reasons:
* 3-dimensional
* Unordered
* Density varies (especially in aerial
LiDAR)

* In aerial LIiDAR, many ML approaches
project the point cloud onto a 2-D plane,
apply image processing

*  Successful in some contexts, but
projection discards the geometry of
the scene

Fig: Whiter areas indicate greater point density, darker areas indicate low density

*  More recently, PointNet! and related approaches process the point cloud directly
* Performs well for object detection and classification
* Has not been applied to regression, inverse problems

Qi et al. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation.



Structured LIDAR Collection ¢ e

LiDAR point clouds are unordered, but they are collected in
a highly structured manner

' haircrafttan(eL)
* LiDAR scanners use constant scan angles and scan

1L frequency
)6 * Aircraft fly at constant speed
"""" Point clouds generated from a single aerial flight pass
L approximate a grid.
............. . Caveats
- haircraft(m) . . ) ' .
" fecanner (points/s) * Grid spacing may not be equal in both directions, or

constant along the scan line
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Fig. Flight parameter impact on

point cloud grid * The grid does not map directly to x and y coordinates in

the scanned environment

* We treat the spatial coordinates as features of each

point on the grid
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Problem: Missing Point Inpainting B NYU | mseise

If a pulse does not return to the scanner,
a point is missing

* Missing points are identifiable where
gaps in the scan angle between
consecutive points are too large

« 3-5% of points in the Brooklyn dataset are
missing
e Causes of missing points
*  Water

*  Rough surfaces

e Scanner failure

* Problem Statement: Can we utilize the
structure of a point cloud to inpaint (|e f|||) Fig. Missing points due to standing water (left) and scanner failure (right)
these missing points via machine learning?
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*  Each scan line is a sequence of points
*  Apply sequence models to predict x, y, and z

1-D coordinates of missing points Seq 1 - llllll
Sequence . Recurrent Nets, 1-D Convolutional Nets, Seq 2 |

Transformers
. Model used: 1-D CNN, U-Net architecture

*  Consecutive scan lines form a 2-D grid of points
*  Scan lines aligned by scan angle
*  Apply image models to predict x, y, and z
coordinates of missing points
2-D Convolutional Nets
. Model used: 2-D CNN, U-Net architecture

Seq 1

Seq 2

Fig. Generating 1-D (top) and 2-D (bottom) 5
samples from point cloud



Model architecture NYU | meoseioo

U-Net

Contractingpath| Expansive path
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* We use the U-Net architecture for both 1-D and 2-D |
models image

output
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* Commonly used architecture, features a contracting path £
followed by an expanding path, "U” shaped. S W ramrzs

*  Wide receptive field allows far away points in sequence to _H
impact prediction. 144
* Applicable to different input sizes, dimensions H.l b cony 2, RO
= - copy and crop
I" 1 § max pool 2x2
8 "‘ 1ba .A 4 up-conv 2x2
: = conv 1x1
Fig: U-Net architecture’ A
PartialConv
Original Image Mask Inpainted image

* To indicate the missing points, we use partial
convolutional layers? that accept an image and a
mask

1 W

7]
o ad .
- g’ C !
‘;{ | . . T“V“
@‘ : 3 M * Mask is reshaped and passed through the model
¥ 4/? ] " * Each layer is aware of the mask
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'Ronneberger et al. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation.
2Liu et al. (2018). Image inpainting for irregular holes using partial convolutions. 6
Fig: Image and Mask input example3 3Oliveira et al. (2001) Fast Digital Image Inpainting.
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2019 aerial LiDAR scan of Sunset Park, Brooklyn * 1-D: 256-point sequences
. 82 flight passes, each 50 seconds and ~12 million * 24,000 training samples, 6,020 validation
points samples
. Features e 2-D:32x32-point squares
* 3 spatial coordinates * 38,000 training samples, 9,000 validation
* Intensity samples
*  Samples discarded if contain actual missing

* Scan angle, abs(scan angle)

i in
* Scan line number points

Fig: Flight strip 164239 from Sunset Park 2019 scan, colored by intensity.



Initial Results B NYU | e

Training  Validation
Loss Loss 1 n
1-D Sequence AN ~ 112
Baseline 1.668 2.157 b 3) = 25 mz Iy = 3l
U-Net w/ PartialConv 1.609 9.128 =1
2-D Grid Vi, J; € R?
Baseline 1.522 2.706
U-Net w/ PartialConv 0.329 0.661 R 1 n o
. Lp(V.7) = —— >[I, -7
* Both 1-D and 2-D models appear to have the capacity to learn N * M4 F
the shapes of the scanned environment _ =l
Yi ) Yl € Rdxd
* 1-D model is overfitting the training data n — Number of samples

* 2-D model substantially outperforms the baseline in both m — Number of masked points per sample

training and validation

e 2-Dinfill is a much harder task than 1-D, so the
baseline is not as successful

Note: 1-D and 2-D use different training/validation sets



1-D Model: Training Set ¢ U
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1-D Model: Validation Set
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2-D Model: Training Set

Model
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2-D Model: Validation Set EANYU| zeeese
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* Evaluate different sample sizes, model architectures
* Do models generalize to different
* mask sizes?
* flight passes?
* datasets?
*  Where does the model perform well? Does this align with regions of interest
(e.g., vertical surfaces)?

* Similar approaches should extend beyond filling missing points to other problems
* Super resolution
* Denoising
* Feature extraction per flight pass, could feed into downstream processing of the full point
cloud

13
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Thank you!
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Baseline & Loss Measure mmonscroot

Baseline

* Compare models to a non-learning, deterministic

* |terative from border to center of masked region O O

approach o ;
e 1-D O Q O Q Q: O Q QKnownvaIue
* Interpolation based on nearest, unmasked points Q Q OQQ O Q ®Missing values
° Z_D Q Q. ® ® ® ® ‘Pointtoﬁll
* Fit a plane to neighboring, unmasked points, Q Q® ® ® @ ®
inpainted value is on the plane QQ XX ¥R K
X XXX
X &

CO®®S®

. :
WEIghtEd MSE Loss Fig: 2-D baseline approach, using n=2
* Accounts for scale of spatial dimensions (neighbor distance)

OO O 0CO000O0

e Datais otherwised normalized

* Otherwise, model does not learn precise predictions
for x and y coordinates, as they have much larger
range in the data than z



