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Aerial LiDAR Scanning
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Fig: Aerial LiDAR Scanning1

Fig: Resulting point cloud from 2019 scan of Sunset Park, Brooklyn. 

1https://www.auav.com.au/articles/drone-data-vs-lidar/

Point Clouds
• Aerial LiDAR scanning creates a point cloud
• Each point has three spatial coordinates, other features 

(intensity, return number, etc.)
In

LiDAR
• Use of laser pulses to measure distances

• LiDAR scanner emits laser pulses, measures the time required for the pulse 
to hit an object, return to scanner

• Point location is calculated based on return time and scanner orientation, 
then georeferenced based on location of scanner

Aerial LiDAR
• LiDAR scanner attached to an aircraft
• Invented in the 1960s, aerial LiDAR was used primarily in 

elevation/topological mapping, used more frequently in urban 
environments in recent years
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Point Cloud Processing

• Applying machine learning to point clouds 
is problematic for a few reasons:

• 3-dimensional
• Unordered
• Density varies (especially in aerial 

LiDAR)

• In aerial LiDAR, many ML approaches 
project the point cloud onto a 2-D plane, 
apply image processing

• Successful in some contexts, but 
projection discards the geometry of 
the scene

1Qi et al. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation.

• More recently, PointNet1 and related approaches process the point cloud directly
• Performs well for object detection and classification
• Has not been applied to regression, inverse problems

Fig: Whiter areas indicate greater point density, darker areas indicate low density



• LiDAR point clouds are unordered, but they are collected in 
a highly structured manner

• LiDAR scanners use constant scan angles and scan 
frequency

• Aircraft fly at constant speed

• Point clouds generated from a single aerial flight pass 
approximate a grid. 

• Caveats
• Grid spacing may not be equal in both directions, or 

constant along the scan line
• The grid does not map directly to x and y coordinates in 

the scanned environment
• We treat the spatial coordinates as features of each 

point on the grid

Structured LiDAR Collection
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Fig. Flight parameter impact on 
point cloud grid
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• If a pulse does not return to the scanner, 
a point is missing

• Missing points are identifiable where 
gaps in the scan angle between 
consecutive points are too large

• 3-5% of points in the Brooklyn dataset are 
missing

• Causes of missing points
• Water
• Rough surfaces
• Scanner failure

• Problem Statement: Can we utilize the 
structure of a point cloud to inpaint (i.e. fill) 
these missing points via machine learning?

Fig. Missing points due to standing water (left) and scanner failure (right) 

Problem: Missing Point Inpainting
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2 modeling approaches
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1-D 
Sequence

2-D 
Grid

• Each scan line is a sequence of points
• Apply sequence models to predict x, y, and z 

coordinates of missing points
• Recurrent Nets, 1-D Convolutional Nets, 

Transformers
• Model used: 1-D CNN, U-Net architecture

• Consecutive scan lines form a 2-D grid of points
• Scan lines aligned by scan angle
• Apply image models to predict x, y, and z 

coordinates of missing points
• 2-D Convolutional Nets

• Model used: 2-D CNN, U-Net architecture

Seq 1

Seq 2

Seq 1

Seq 2

Fig. Generating 1-D (top) and 2-D (bottom) 
samples from point cloud



1Ronneberger et al. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation.
2Liu et al. (2018). Image inpainting for irregular holes using partial convolutions.
3Oliveira et al. (2001) Fast Digital Image Inpainting.

Model architecture
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• We use the U-Net architecture for both 1-D and 2-D 
models

• Commonly used architecture, features a contracting path 
followed by an expanding path, ”U” shaped.

• Wide receptive field allows far away points in sequence to 
impact prediction.

• Applicable to different input sizes, dimensions

Original Image Mask Inpainted image

Fig: U-Net architecture1

Fig: Image and Mask input example3

• To indicate the missing points, we use partial 
convolutional layers2 that accept an image and a 
mask

• Mask is reshaped and passed through the model
• Each layer is aware of the mask

PartialConv

U-Net



2019 aerial LiDAR scan of Sunset Park, Brooklyn
• 82 flight passes, each 50 seconds and ~12 million 

points
• Features

• 3 spatial coordinates

• Intensity
• Scan angle, abs(scan angle)
• Scan line number

Data
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Dataset Sampling

• 1-D: 256-point sequences
• 24,000 training samples, 6,020 validation 

samples
• 2-D: 32x32-point squares

• 38,000 training samples, 9,000 validation 
samples

• Samples discarded if contain actual missing 
points

Fig: Flight strip 164239 from Sunset Park 2019 scan, colored by intensity.



• Both 1-D and 2-D models appear to have the capacity to learn 
the shapes of the scanned environment

• 1-D model is overfitting the training data

• 2-D model substantially outperforms the baseline in both 
training and validation

• 2-D infill is a much harder task than 1-D, so the 
baseline is not as successful

Note: 1-D and 2-D use different training/validation sets

Initial Results
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MSE Loss
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1-D Model: Training Set
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1-D Model: Validation Set
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Model

2-D Model: Training Set

11

Baseline



Model

2-D Model: Validation Set
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Baseline



Conclusion
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Next Steps

Extensions

• Evaluate different sample sizes, model architectures
• Do models generalize to different

• mask sizes?
• flight passes?
• datasets?

• Where does the model perform well? Does this align with regions of interest 
(e.g., vertical surfaces)?

• Similar approaches should extend beyond filling missing points to other problems
• Super resolution
• Denoising

• Feature extraction per flight pass, could feed into downstream processing of the full point 
cloud



Thank you!



Appendix



Baseline & Loss Measure

• Compare models to a non-learning, deterministic 
approach

• 1-D
• Interpolation based on nearest, unmasked points

• 2-D
• Fit a plane to neighboring, unmasked points, 

inpainted value is on the plane
• Iterative from border to center of masked region

Fig: 2-D baseline approach, using n=2 
(neighbor distance)

Baseline

Loss Model

• Weighted MSE Loss
• Accounts for scale of spatial dimensions
• Data is otherwised normalized

• Otherwise, model does not learn precise predictions 
for x and y coordinates, as they have much larger 
range in the data than z


